• Title/Summary/Keyword: GPS L2C

Search Result 56, Processing Time 0.034 seconds

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

A Study on Propagation Path Characteristics of GPS Potential Jamming Signal Based on Spherical Ground Diffraction Loss

  • Ko, Kwang-Soob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.264-269
    • /
    • 2013
  • This paper is to investigate propagation path characteristics of GPS potential jamming signal. To do this, the spherical ground diffraction model is applied to the potential jamming scenario referred to the GPS jamming events occurred in recent years. The fundamental theory on the propagation path loss is discussed and a specific model is applied to several vehicles types which have own heights of antennas in order to compare their propagation path loss values at same 2-D location. The transmitting powers are appropriately given as the ordinary GPS jamming events. And then the received powers in dBW are obtained with given transmitting powers and the estimated total loss. The result of received jamming power at various locations due to the given scenario was distinct. For example, propagation loss values were estimated as -147 ~ -142dBW and -167 ~ -162dBW in $10^6W$ and $10^4W$, respectively. This computation result of the loss can be seriously considered with the tolerable jammer power against L1- C/A GPS receiver under any real jamming situations.

Analysis on GNSS Spoofing signal effects using SDR receiver (SDR 수신기를 이용한 위성항법 기만신호 효과도 분석)

  • Cho, Ji-haeng
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2019
  • The GNSS(Global Navigation Satellite System) provides important information such as Position and Navigation, Timing(PNT) to various weapon systems in the military. as a result, applications that employ satellite navigation systems are increasing. therefore, a number of studies have been conducted to deceive the weapon systems that employ GNSS. GNSS spoofing denotes the transmission of counterfeit GNSS-like signals with the intention to produce a false position and time within the victim receiver. In order to deceive the victim receiver, spoofing signal should be synchronized with GNSS signal in doppler frequency and code phase, etc. In this paper, Civilian GPS L1 C/A spoofing signals have been evaluated and analyzed by SDR receiver.

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Design and Applications of a Generalized Software-Based GNSS IF Signal Generator

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.211-215
    • /
    • 2006
  • In this paper, design and applications of a generalized, versatile and customizable IF signal generator that can model the modernized GPS and Galileo signal is given. It generates IF sampled data that can be directly used by a software receiver. Entire constellation of satellites which is independent of satellite-user geometry is easily determined using a real or simulated ephemeris data. Since the IF center frequency, sampling frequency and quantization bit number are user location dependent parameters, their effects are also considered in IF signal generator. The generalized IF signal generator will be very well suited for the development phase of a software receiver due to its versatility. The full access to the sampling frequency, front-end filter definition and ADC parameters also offers a great opportunity for cost-effective analysis of tracking loops and error mitigation techniques at the receiver level. Interference sources can be easily added to the generator to simulate specific environments. This software IF signal generator can also be used to feed a multi-frequency multi-system software receiver for the prototyping of a combined GPS/Galileo receiver. The test result using the generated signals and a real software receiver shows the effectiveness of the implemented IF signal generator.

  • PDF

Ranging Data Accuracy in K13 S-Band Antenna

  • Ahn Sang-il;Park Dong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.464-466
    • /
    • 2004
  • Ranging and 2-way Doppler measurements are very essential source for orbit determination in LEOP (Launch and Early Operation). This paper shows ranging system features of 13M TT &C antenna and test results recently acquired with KOMPSAT-l. Ranging and 2-way Doppler measurements were compared with KOMPSAT-I GPS telemetry data. Through comparison, it was found that constant and accurate ranging measurements are available with 13M antenna system. Ranging and Doppler measurement function is expected to be used for KOMPSAT-1 and KOMPSAT-2.

  • PDF

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.

Performance Analysis of Assisted-Galileo Signal Acquisition Under Weak Signal Environment (약 신호 환경에서의 Assisted-Galileo 신호 획득 성능 분석)

  • Lim, Jeong-Min;Park, Ji-Won;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.646-652
    • /
    • 2013
  • EU's Galileo project is a market-based GNSS (Global Navigation Satellite System) that is under development. It is expected that Galileo will provide the positioning services based on new technologies in 2020s. Because Galileo E1 signal for OS (Open Service) shares the same center frequency with GPS L1 C/A signal, CBOC (Composite Binary Offset Carrier) modulation scheme is used in the E1 signal to guarantee interoperability between two systems. With E1 signal consisting of a data channel and a pilot channel at the same frequency band, there exist several options in designing signal acquisition for Assisted-Galileo receivers. Furthermore, compared to SNR worksheet of Assisted-GPS, some factors should be examined in Assisted-Galileo due to different correlation profile and code length of E1 signal. This paper presents SNR worksheets of Galileo E1 signals in E1-B and E1-C channel. Three implementation losses that are quite different from GPS are mainly analyzed in establishing SNR worksheets. In the worksheet, hybrid long integration of 1.5s is considered to acquire weak signal less than -150dBm. Simulation results show that the final SNR of E1-B signal with -150dBm is 19.4dB and that of E1-C signal is 25.2dB. Comparison of relative computation shows that E1-B channel is more profitable to acquire the strongest signal in weak signal environment. With information from the first satellite signal acquisition, fast acquisition of the weak signal around -155dBm can be performed with E1-C signal in the subsequent satellites.

Mobile Mapping System Development Based on MEMS-INS for Measurement of Road Facility (도로시설물 계측을 위한 MEMS-INS 기반 모바일매핑시스템(MMS) 개발)

  • Lee, Kye Dong;Jung, Sung Heuk;Lee, Ki Hyung;Choi, Yun Soo;Kim, Man Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The purpose of this study is that the low-cost mobile mapping system using INS (Inertial Navigation System) based on MEMS (Micro Electro Mechanical System) could decipher the interpretation of road facility with the accuracy of x, y 0.546m plane error. Even though the MMS (Mobile Mapping System) technology as a new measurement technology has been used vividly to set up geographic information by some world leading surveying equipment manufacturers, the domestic technology is still in its beginning stage. Several domestic institutes and companies tried to catch up the leading technology but they just produced prototypes which needs more stabilization. Through this thesis, we developed low-cost mobile mapping system installed with INS based on MEMS after time synchronizing sensors for MMS such as LiDAR (Light Detection And Ranging), CCD (Charge Coupled Device), GPS/INS (Global Positioning System / Inertial Navigation System) and DMI (Distance Measurement Instrument).

Nutrients removal and microbial activity for A2O Process Using Activated Sludge Models (활성슬러지 모델을 이용한 A2O공법 영양염류 제거 및 미생물 거동)

  • Yoon, Hyunsik;Kim, Dukjin;Choi, Bongho;Kim, Moonil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.889-896
    • /
    • 2012
  • In this study, simulation results of nitrogen and phosphorus removals and microbial activities for an $A_2O$ process in wastewater treatment plant are presented by using Activated Sludge Models (ASMs). Simulations were performed using pre-calibrated model and layout implemented in GPS-X simulation software. The models were used to investigate variations of SRT, water temperature, DO and C/N ratio effect on nutrients removal and microbial activity. According to the simulated results, the successful nitrification required SRT higher than 10.3 days, whereas increase of $NO_3$-N loading in the anaerobic reactor caused phosphorus release by PAOs; the effluent $NH_4$-N showed rapid change between $12^{\circ}C$(21.7 mg/L) and $13^{\circ}C$(3.2 mg/L); the effluent phosphorus was increased up to 1.9 mg/L at water temperature of $25^{\circ}C$; the DO increase was positive for heterotrophs and autotrophs growths but negative for PAOs growth; the PAOs showed low activity when C/N ratio was lower than 2.5. The experimental results indicated that the calibrated models can assure the prediction quality of the ASMs and can be used to optimize the $A_2O$ process.