• Title/Summary/Keyword: GPS Data Processing

Search Result 374, Processing Time 0.019 seconds

Development of MATLAB GUI Based Software for Generating Multi-GNSS Network RTK MAC Correction (MATLAB GUI 기반 다중 위성군 Network RTK MAC 보정정보 생성 소프트웨어 개발)

  • Bu-Gyeom Kim;Changdon Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.412-417
    • /
    • 2022
  • In this paper, multi-GNSS network RTK MAC correction generation software developed based on MATLAB GUI is introduced. The software was developed as a post-processing software based on simulation data to evaluate the feasibility of an algorithm for generating correction for multi-GNSS including GPS, GLONASS, and Galileo. As a result of software operation, network RTK correction for each system of multi-GNSS is output in MATLAB file format. In this paper, to evaluate the performance of the developed software, the residual error was analyzed after applying the correction generated through the software to the user. As a result of the analysis, it was confirmed that effective network RTK correction could be generated by confirming that the residual errors of users were maintained at 10 cm or less.

A Direction Computation and Media Retrieval Method of Moving Object using Weighted Vector Sum (가중치 벡터합을 이용한 이동객체의 방향계산 및 미디어 검색방법)

  • Suh, Chang-Duk;Han, Gi-Tae
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.399-410
    • /
    • 2008
  • This paper suggests a new retrieval method using weighted vector sum to resolve a problem of traditional location-based retrieval method, nearest neighbor (NN) query, and NN query using direction. The proposed method filters out data with the radius, and then the remained retrieval area is filtered by a direction information compounded of a user's moving direction, a pre-fixed interesting direction, and a pre-fixed retrieval angle. The moving direction is computed from a vector or a weighted vector sum of several vectors using a weight to adopt several cases. The retrieval angle can be set from traditional $360^{\circ}$ to any degree you want. The retrieval data for this method can be a still and moving image recorded shooting location, and also several type of media like text, web, picture offering to customer with location of company or resort. The suggested method guarantees more accurate retrieval than traditional location-based retrieval methods because that the method selects data within the radius and then removes data of useless areas like passed areas or an area of different direction. Moreover, this method is more flexible and includes the direction based NN.

Application Possibility of Control Points Extracted from Ortho Images and DTED Level 2 for High Resolution Satellite Sensor Modeling (정사영상과 DTED Level 2 자료에서 자동 추출한 지상기준점의 IKONOS 위성영상 모델링 적용 가능성 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2007
  • Ortho images and Digital Elevation Model (DEM) have been applied in various fields. It is necessary to acquire Ground Control Points (GCPs) for processing high resolution satellite images. However surveying GCPs require many time and expense. This study was performed to investigate whether GCPs automatically extracted from ortho images and DTED Level 2 can be applied to sensor modeling for high resolution satellite images. We analyzed the performance of the sensor model established by GCPs extracted automatically. We acquired GCPs by matching satellite image against ortho images. We included the height acquired from DTED Level 2 data in these GCPs. The spatial resolution of the DTED Level 2 data is about 30m. Absolution accuracy of this data is below 18m above MSL. The spatial resolution of ortho image is 1m. We established sensor model from IKONOS images using GCPs extracted automatically and generated DEMs from the images. The accuracy of sensor modeling is about $4{\sim}5$ pixel. We also established sensor models using GCPs acquired based on GPS surveying and generated DEMs. Two DEMs were similar. The RMSE of height from the DEM by automatic GCPs and DTED Level 2 is about 9 m. So we think that GCPs by DTED Level 2 and ortho image can use for IKONOS sensor modeling.

  • PDF

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.