• Title/Summary/Keyword: GPS Data

Search Result 1,974, Processing Time 0.036 seconds

Algorithm for Improving GPS Performance by Data Pre-processing (데이터 사전처리에 의한 GPS 성능 개선 알고리즘)

  • Rhee Jae-Hoon;Hong Won-Chul;Kim Hyun-Soo;Jeon Chang-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.752-758
    • /
    • 2006
  • A GPS receiver provides much information such as calculated position, speed, heading, status of satellites, current time errors, etc. It is well-known that GPS signals from GPS receiver mounted on moving vehicle are often distorted, contaminated by various noises, and blocked by tunnel or tall buildings. The phenomenon often obstructs correct navigation especially when a vehicle keeps stopping or is moving in low speed. Therefore it is needed to pre-process the signals to adapt it to various applications. In this paper, an algorithm to pre-process the signals is proposed. For this, GPS data obtaining from uNAV GPS receiver are analyzed and classified based on dynamic characteristic. Then, the proposed algorithm is applied to the data and some test results are shown to verify the usefulness of the algorithm.

The Verification of Precision of Single RTK-GPS using CORS (CORS를 이용한 Single RTK-GPS 정확도 검증)

  • Park, Un-Yong;Lee, Dong-Rak;Lee, In-Su;Bae, Kyoung-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.29-35
    • /
    • 2004
  • The plenty of availability and high precision of GPS CORS is the reason why it become important more and more in the fields of surveying widely. In this study, I extracted the arbitrary point's coordinate which is using GPS CORS data, now served in RINEX FORMAT via Inter-Net, with observation network of the existing triangulation and GPS CORS data. Then, with this arbitrary point as reference station RTK GPS was performed. And I will study VRS-GPS concept which reduces the time and cost in the fields of surveying.

  • PDF

A study of Web-Based GPS Data Processing System (웹 기반 GPS 자료처리 시스템 개발에 관한 연구)

  • 최우영;권재현;염재홍;이용욱
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.81-92
    • /
    • 2003
  • A protocol for the web-based GPS data processing system has been developed. The system is developed following the typical ASP system, in which the GPS data acquired by various users can be uploaded through the web and the data is processed with data processing components selected by the users. After the processing, the results are also transported to the users through the web. The developed system is designed for easy software upgrade and it is an asynchronous process mode so that the multiple accesses can be handled with high user flexibility. The database components for the efficient GPS data maintenance are developed so that the data from CORS can be used for the data processing. Currently, the absolute and relative positioning algorithms using code measurements are integrated and much more algorithms such as the data quality control, absolute and relative positioning using phases will be integrated in near future.

  • PDF

Long-term variation of total electron contents over Daejeon measured from Global Positioning System between 2000 and 2010

  • Lee, Chi-Na;Chung, Jong-Kyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.27.1-27.1
    • /
    • 2011
  • This study is about the ionospheric variation on the Korean Peninsula using GPS TEC data from Daejeon IGS GPS site. It has accumulated the 11 years GPS data from 2000. In this work, the hourly and daily averaged TEC data are used. Data period covers a full solar cycle from 2000 to 2010 (11 years) which the total observed days are 98%. The mean TEC data shows the annual/semiannual variation, solar cycle and 27 days. GPS TEC has a good correlation with solar F10.7 index. We also compare with planetary Kp and AE indices. The maximum of the daily mean GPS TEC is around 50 TECU at 2000 and that value of 2009 is near 10 TECU. we confirms that the GPS TEC is a good indicator for ionospheric variation for the mid-latitudinal region to understand the ionospheric climatology over Korea Peninsula.

  • PDF

Design of a machine learning based mobile application with GPS, mobile sensors, public GIS: real time prediction on personal daily routes

  • Shin, Hyunkyung
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.27-39
    • /
    • 2018
  • Since the global positioning system (GPS) has been included in mobile devices (e.g., for car navigation, in smartphones, and in smart watches), the impact of personal GPS log data on daily life has been unprecedented. For example, such log data have been used to solve public problems, such as mass transit traffic patterns, finding optimum travelers' routes, and determining prospective business zones. However, a real-time analysis technique for GPS log data has been unattainable due to theoretical limitations. We introduced a machine learning model in order to resolve the limitation. In this paper presents a new, three-stage real-time prediction model for a person's daily route activity. In the first stage, a machine learning-based clustering algorithm is adopted for place detection. The training data set was a personal GPS tracking history. In the second stage, prediction of a new person's transient mode is studied. In the third stage, to represent the person's activity on those daily routes, inference rules are applied.

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

Determination of Practical Orthometric Height for Permanent GPS Station (GPS 상시관측점의 실용 표고좌표 결정)

  • Yun, Hong-Sic;Huang, He;Song, Dong-Seob;Hwang, Jin-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.299-307
    • /
    • 2007
  • This study is about the calculation of practical orthometric height for permanent GPS station. We presented the method to determine the orthometric height precisely by combining leveling data, GPS data and gravimetry data, and determined the orthometric heights of thirty GPS stations. To test the result we developed the expected error model fur the determined orthometric heights regarding the accuracy of Korean national benchmarks and the precision of surveying methods used at this project. The reliability of the results was presented by comparing it with expected error model statistically.

DETERMINATION OF GPS HEIGHT WITH INCORPORATION OF USING SURFACE METEOROLOGICAL MEASUREMENTS

  • Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • Although the positioning accuracy of the Global Positioning System (GPS) has been studied extensively and used widely, it is still limited due to errors from sources such as the ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath and tropospheric influence. This investigation addresses the tropospheric effect on GPS height determination. Data obtained from GPS receivers and co-located surface meteorological instruments in 2003 are adopted in this study. The Ministry of the Interior (MOl), Taiwan, established these GPS receivers as continuous operating reference stations. Two different approaches, parameter estimation and external correction, are utilized to correct the zenith tropospheric delay (ZTD) by applying the surface meteorological measurements (SMM) data. Yet, incorrect pressure measurement leads to very poor accuracy. The GPS height can be affected by a few meters, and the root-mean-square (rms) of the daily solution ranges from a few millimeters to centimeters, no matter what the approach adopted. The effect is least obvious when using SMM data for the parameter estimation approach, but the constant corrections of the GPS height occur more often at higher altitudes. As for the external correction approach, the Saastamoinen model with SMM data makes the repeatability of the GPS height maintained at few centimeters, while the rms of the daily solution displays an improvement of about 2-3 mm.

  • PDF

Analysis of 3 Dimension Topography by Real-Time Kinematic GPS Surveying (RTK GPS 측량에 의한 3차원 지형 해석)

  • 신상철;서철수
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.309-324
    • /
    • 2001
  • To apply the real-time kinematic GPS surveying technique, this research has tried to obtain the TOKYO datum first from the continuous reference stations distributed all over the country. Then, analysis of the geography of a coastal area including both of land and sea has been carried out by the post-processed continuous kinematic GPS technique and the real-time kinematic GPS surveying technique. After considering the initial conditions and measuring time zone for real-time kinematic GPS, post-processed and the real-time kinematic GPS measurements have been carried out. A new system has been proposed to store measured data by using a program developed to store GPS data in real time and to monitor the satellite condition through controller simultaneously. The accuracy of GPS data acquired in real time was as good as that acquired by post processing. It is expected that it will be useful for the analysis of coastal geographic characteristics because DTM can be also constructed for the harbor reclamation, the dredging and the variation of soil movement in a river.

  • PDF

Development of MATLAB GUI Based Software for Generating GPS RINEX Observation File (MATLAB GUI 기반 GPS RINEX 관측 파일 생성 소프트웨어의 개발)

  • Kim, Dong-uk;Yun, Ho;Han, Deok-hwa;Jang, Joo-young;Kee, Chang-don;So, Hyoung-min;Lee, Ki-hoon;Jang, Jae-gyu
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.299-304
    • /
    • 2015
  • This paper introduces development of the MATLAB GUI based software for generating GPS RINEX observation file. The purpose of this software is to generate GPS measurements of reference station or dynamic user, which are similar to the real GPS receiver data, accurately and efficiently. This software includes two data generation modes. One is Precision mode which generates GPS measurements as accurate as possible using post-processing data. The other is Real-time mode which generates GPS measurements using GPS error modeling technique. GPS error sources are calculated on the basis of each data generation mode, and L1/L2 pseudorange, L1/L2 carrier phase, and Doppler measurements are produced. These generated GPS measurements are recorded in the RINEX observation version 3.0 file. Using received GPS data at real reference station, we analyzed three items to verify software reliability; measurement bias, rate of change, and noise level. Consequently, RMS error of measurement bias is about 0.7 m, and this verification results demonstrate that our software can generate relatively exact GPS measurements.