• 제목/요약/키워드: GPS DOP

검색결과 43건 처리시간 0.02초

Assessment of Position Degradation Due to Intermittent Broadcast of RTK MSM Correction Under Various Conditions

  • Yoon, Hyo Jung;Lim, Cheol soon;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.237-248
    • /
    • 2020
  • GNSS has been evolving dramatically in recent years. There are currently 6 GNSS (4 GNSS, AND 2 RNSS) constellations, which are GPS (USA), GLONASS (Russia), BeiDou (China), Galileo (EU), QZSS (Japan), and IRNSS (India). The Number of navigation satellites is expected to be over 150 by 2020. As the number of both constellations and satellites used for the improvement of positioning performance, high accuracy, and robustness of precise positioning is more promising. However, a large amount of the correction messages is required to support the augmentation system for the available satellites of all the constellations. Since bandwidth for the correction messages is generally limited, sending or scheduling the correction messages might be a critical issue in the near future. In this study, we analyze the relationship between the size of the bandwidth and Real-Time Kinematics (RTK) performance. Multiple Signal Messages (MSM), the only Radio Technical Commission for Maritimes (RTCM) message that supports multi-constellation GNSS, has been used for this assessment. Instead of the conventional method that broadcasts all the messages at the same time, we assign the MSM broadcasting interval for each constellation in 5 seconds. An open sky static and dynamic test for this study was conducted on the roof of Sejong University. Our results show that the RTK fixed position accuracy is not affected by the 5-second interval corrections, but the ambiguity fixing rate is degraded for poor DOP cases when RTK correction are transmitted intermittently.

러시아의 GLONASS 항법 파라미터 및 성능 분석 (Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS)

  • 최창묵
    • 한국항해항만학회지
    • /
    • 제42권1호
    • /
    • pp.17-24
    • /
    • 2018
  • 러시아의 위성항법시스템인 GLONASS(GLObal NAvigation Satellite System)는 2011년 10월 이후 정상적으로 재가동되었으며 지속적으로 시스템 구성이 현대화되고 있다. 최근 2017년 10월 16일 발사된 GLONASS 752 위성(GLONASS-M)이 정상 작동됨에 따라서 2세대 위성인 GLONASS-M 22기와 3세대 위성인 GLONASS-K 1기로 총 24기 위성이 구축되었다. 따라서 본 논문은 현재의 GLONASS 위성 항법시스템의 항법위성으로부터 실데이터를 수신하여 항법파라미터 특성 및 성능을 분석하고자 하였다. 수신된 데이터를 분석한 결과 항상 항법위성 5~11기가 동시에 가시선상에 있어서 항법신호를 수신할 수 있음을 확인하였으며, 실험에 이용된 위성들의 DOP(Dilution of Position)는 GDOP, PDOP, HDOP, VDOP, TDOP 각각 2.790, 2.424, 1.169, 2.123, 1.381을 얻었다. 또한 수신된 데이터의 위치 정밀도를 분석한 결과 표준편차 1.4m로 매우 우수하였다. 결과적으로 GLONASS와 GPS(Global Positioning System)는 성능이 거의 동일하며 향후 GLONASS 시스템의 이용 확대가 기대된다.

A Simulation Based Assessment for Evaluating the Effectiveness of Quasi-Zenith Satellite System

  • Suh, Yong-Cheol;Shibasaki, Ryosuke
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.181-190
    • /
    • 2003
  • Since the operation of the first satellite-based navigation service, satellite positioning has played an increasing role in both surveying and geodesy, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with CPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the CPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-dimensional digital map. Through this developed simulation system, it is possible to calculate the number of simultaneously visible satellites and available area for positioning without the need of actual observation. Furthermore, this system can calculate the Dilution Of Precision (DOP) and the error distribution.