• 제목/요약/키워드: GPS Carrier Phase

검색결과 151건 처리시간 0.026초

반송파위성 GPS를 위한 빠른 미지정수 결정 기법 및 성능 분석 (Fast Ambiguity Determination Method(FADM) for Carrier Phase GPS and Performance Analysis)

  • 최규일;오민석;심덕선
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.1036-1043
    • /
    • 2001
  • It is well-known that positioning accuracy can be improved by the use of carrier phase of GPS up to the centimeter level. In order to obtain good accuracy, we need to know integer ambiguity in the carrier phase accurately. In this paper, we propose a fast ambiguity determination method(FADM) which combines Kalman filtering and the search method, and show the improvement of the positioning performance by static and kinematic simulation compared with known methods such as Kalman filtering, LSAST (Least Squares Ambiguity Search Technique), ARCE(Ambiguity Resolution with Constratint Equation), LLL(Lenstra, Lenstra, and Lovasz) algorithms.

  • PDF

GPS 반송파위상 데이터를 이용한 시계오차 추출 (DETERMINATION OF CLOCK OFFSET USING GPS CARRIER PHASE MEASUREMENTS)

  • 하지현;박관동;이창복
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권4호
    • /
    • pp.491-500
    • /
    • 2005
  • 세계 각국은 국제적으로 통일된 시각동기 체계를 따르고 있으며 국가표준시 유지를 위하여 GPS(Global Positioning System)를 활용하고 있다. 현재 국내 GPS 기반 시각동기 연구는 코드데이터와 방송궤도력을 사용하고 있다. 이 연구에서는 보다 정확한 시계오차 추출을 위하여 반송파위상 데이터를 사용하였으며, 방송궤도력 뿐만 아니라 정밀궤도력, 신속궤도력, 그리고 초신속궤도력을 사용하였다. 정밀궤도력을 사용하여 산출된 시계오차를 참값으로 가정하였을 때, 신속궤도력과 초신속궤도력의 경우 약 0.5ns의 정밀도를 나타내었으며, 방송궤도력의 경우는 2ns 이하의 정밀도를 나타내었다.

Carrier Tracking Loop using the Adaptive Two-Stage Kalman Filter for High Dynamic Situations

  • Kim, Kwang-Hoon;Jee, Gyu-In;Song, Jong-Hwa
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.948-953
    • /
    • 2008
  • In high dynamic situations, the GPS carrier tracking loop requires a wide bandwidth to track a carrier signal because the Doppler frequency changes more rapidly with time. However, a wide bandwidth allows noises within the bandwidth of the tracking loop to pass through the loop filter. As these noises are used in the numerical controlled oscillator(NCO), the carrier tracking loop of a GPS receiver shows a degraded performance in high dynamic situations. To solve this problem, an adaptive two-stage Kalman filter, which offers the NCO a less noisy phase error, can be used. This filter is based on a carrier phase dynamic model and can adapt to an incomplete dynamic model and a quickly changed Doppler frequency. The performance of the proposed tracking loop is verified by several simulations.

Analysis of success rate of GPS carrier phase ambiguity resolution in Korea peninsula

  • Soo, Son-Ji;In, Jee-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.114.1-114
    • /
    • 2001
  • GPS Receiver gives pseudorange Doppler and integrated carrier phase for measurements to compute navigation information. Thought the integrated carrier phase can be transfer to the equal domain as pseudorange by multiplying the wave length of the received signal, in order to get position information from the carrier phase measurements the integer ambiguity should be resolved. And differencing technique is generally used to eliminate the common error terms of the integrated carrier phase measurements between robber and server. In short baseline double-differencing operation has effect on elimination the common biases for both stations and thus ambiguity resolution are to be reliable. But the baseline increases, the integer ambiguity resolution is hardly, due to the correlated common error is increase ...

  • PDF

삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계 (The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique)

  • 오상헌;박찬식;이상정;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

네트워크 기반의 GPS 반송파 상대측위 정확도 향상 (Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning)

  • 이용욱;배경호
    • Spatial Information Research
    • /
    • 제15권2호
    • /
    • pp.111-121
    • /
    • 2007
  • GPS의 3차원 위치결정은 코드파와 반송파를 이용한다. 하지만 이동체에 대한 cm 수준의 정확도를 획득하기 위해서는 정확한 기지점의 성과를 이용한 GPS 반송파 상대측위, 즉 RTK-GPS 기법을 수행하여야 한다. 이 때 두 대의 수신기 사이의 거리가 증가할수록 기선장에 따른 오차가 증가하여 기준국과 사용자 수신기의 거리를 $10{\sim}20km$ 정도로 제한하고 있다. 따라서 사용자는 깊은 내륙, 연안 해역 등과 같은 기준국과 이동체의 이격이 수십 km로 증대되는 지역에서는 기준국 설치의 문제를 포함하고 있으며 독자적인 기준국을 설치하여야 하는 인력 및 장비의 부담을 가지게 된다. 이를 극복하기 위해 본 연구에서는 네트워크 기반의 GPS 반송파 상대측위 방식을 제안하였으며 GPS 네트워크 처리 프로그램인 DAUNet을 개발하였다. 기선장에 따른 오차보정량 산출을 위해 선형보간알고리즘 방식에 기반한 함수모델과 통계모델을 제시하였으며, 오차보정량의 보간은 면보정매개변수 방식을 제안하였다. 기존 단일기준국 방식은 기선장에 따른 오차를 소거하지 못하였지만 본 연구에서는 사용자 수신기와 평균 30km 떨어진 3대의 기준국을 이용하여 기선장에 따른 오차보정량을 소거 혹은 감소시킬 수 있었다. 따라서 사용자는 네트워크 기반의 GPS 반송파 상대측위 방식을 이용하여 이동체에 대한 10cm 이하 수준의 정확도를 획득할 수 있었다.

  • PDF

GPS를 이용한 선간거리계의 정확도에 관한 연구 (A Study on the accuracy of Rangefinder between vessels by use of GPS)

  • 김광홍
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.215-226
    • /
    • 1999
  • The experimented rangefinder consist of sets of V/A-Code GPS and sets of L1 C/A-code & carrier phase receivers connected by two spread spectrum radio modems in order to measure relative range and bearing between two ship antennas by real time, comparing and analyzing accuracy of both GPS receivers at the fix point on the land by means of executing zero baseline test by C/A code and by carrier phase as well as measuring distance range 5m, 10m, 15m between each other receivers. The results from the measurement of relative range and bearing are as follows as ;1. According to the results from zero baseline test, the average error by C/A-code receiver is less than 0.1m, which proves theories from published books but when each GPS receivers track different satellites, the range accuracy error becomes up to 100m by means of S/A. Because of this sudden wide range error, rangefinder is not appropriate at relative range measurement without additional modification of the algorism of the GPS receiver itself.2. According to relative range measurement by Carrier Phase and zero baseline test at static condition, the range error is less than 3.5cm in case that it passes more than 5 minutes after GPS sets can track simultaneously more than 6 satellites. Its main reason is understood that the phase center of antenna is bigger than geodetic antenna.3. When range measurement of two receivers from 5m, to 10m to 15m, the each range error is 0.340m, 0.190m, 0.011m and each standard variation is 0.0973m, 0.0884m, 0.0790m. The range error and standard variation are in inverse proportion to distance between two receivers. 4. L1 Carrier Phase GPS generally needs 5 minutes to fix and during this ambiguity search, the relative range and bearing angle is shown to be various.

  • PDF

GPS 반송파 위상을 이용한 정밀 자세 측정 (Precise attitude determination using GPS carrier phase measurements)

  • 박찬식;이장규;지규인;이영재
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.602-612
    • /
    • 1997
  • With GPS carrier phase measurements from more than two antenna which attached to the vehicle, precise attitude can be easily obtained if the integer ambiguity included in carrier phase measurement is resolved. Recently some special products which use dual frequencies or has one receiver engine with multiple antenna are announced. But there are still strong requirements for the conventional single frequency off-the-shelf receiver. To meet these requirements, an efficient integer ambiguity resolution technique is indispensable. In this paper, a new technique to resolve integer imbiguity with single frequency receivers is proposed. The proposed method utilize the known baseline length as a constraint of independent elements of integer ambiguities. With this constraints, the size of search volume can be greatly reduced. Thus the true integer ambiguity can be easily determined with less computational burden and number of measurements. The proposed method is applied to real data to show its effectiveness.

  • PDF

회전체의 GPS 신호 영향 분석 (Analysis of Effect of the Spinning Vehicle on the GPS Signal)

  • 조종철;김정원;황동환;이상정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.189-191
    • /
    • 2006
  • This paper analyzes effect of the spinning vehicle on the GPS signal. In rapid spinning vehicles such as missiles and space rockets, carrier phase and frequency depend on the roll rate of the vehicle. It induces phase and frequency modulation caused by the roll rate. The modulated phase and frequency increase dynamic stress error of the tracking loop. Even though higher order tracking loop can remove dynamic stress error, the dynamic stress error can not be remove in this case. In order to analyze the effect of the spinning vehicle on the GPS signal, the experiments are carried out. The experiment results show the modulation of the carrier frequency and phase caused by the roll rate of the spinning vehicle.

  • PDF

Threshold Determination of The GPS Carrier Acceleration, Ramp, and Step on the Normal Condition

  • Son, Eunseong;Kim, Koon-Tack;Im, Sung-Hyuck;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권4호
    • /
    • pp.195-203
    • /
    • 2015
  • In this study, the carrier acceleration-ramp-step test was applied to GPS carrier phase measurements, and the results were compared and analyzed. In the carrier acceleration-ramp-step test, the acceleration, ramp, and measurements are estimated using 10 consecutive carrier phase measurements for satellites observed at the same time based on the least square method. As for the characteristic of this test, if failure occurs in the measurement, the value jumps significantly compared to the previous result; but it judges that failure has occurred in all the satellites although failure has occurred in one satellite. Therefore, in this study, a method that eliminates a satellite with failure was suggested, and thresholds of the carrier acceleration, ramp, and step were suggested. The evaluation of the failure detection performance of carrier phase measurement using the suggested thresholds showed that failure could be detected when the carrier phase measurement changed abruptly by more than about 0.1 cycles.