• Title/Summary/Keyword: GPS 존데

Search Result 19, Processing Time 0.021 seconds

Case Study on the Mixed Layer Development using the UHF Radio Sounding (고도별 UHF 원격 관측을 이용한 혼합층 발달 사례 분석)

  • Kim, Sang-Jin;Kwon, Byung Hyuk;Kim, Kwang-Ho;Kim, Park Sa;Kim, Min-Seong;Jo, Won Gi;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.253-264
    • /
    • 2018
  • The GPS radiosonde is designed to conduct a full synoptic sounding to balloon burst using data generated from precision meteorological sensors and the GPS satellite network. The GPS radiosonde include proven, accurate temperature, humidity and capacitance aneroid pressure sensors. The atmospheric boundary layer was intensively observed in three islands of the west sea from 18 LST on March 9, 2016 to 06 LST on March 12, 2016. We investigated the restriction of nocturnal stable layer and rather the development of the mixed layer at night. On March 9, nocturnal mixed layer was developed by buoyancy heat flux. On the other hand, on March 10, the shear production was higher especially at 21 LST when the mixed layer height was the highest during the intensive observation period. The wind shear and the surface heat flux which produce the turbulent kinetic energy played an important role to grow the mixed layer even at night.

Comparison of Local Mean Temperature Equations for GPS-based Precipitable Water Vapor Determination (GPS 가강수량 결정을 위한 한국형 평균온도식 비교)

  • Ha, Ji-Hyun;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • The mean temperature equation is a key factor in calculating GPS meteorological information. A local mean temperature equation should be used to improve accuracy of GPS PWV (Precipitable Water Vapor). In this paper, four local mean temperature equations, HP, $HP_M,\;HPt_Y,\;and\;HPt_M$ from Ha & Park (2008) were used to analyze the effects of local models in determining GPS PWV. Four different sets of GPS PWVs were compared with radiosonde PWV to validate the accuracies of local models. GPS PWVs of four local models have similar trends compared against radiosonde PWV. The bias and RMS error were the same level: the bias is ${\sim}3mm$ and the RMS is ${\sim}3.6mm$ after the bias was removed. Especially, with $HPt_Y\;and\;HPt_M$ models one can obtain accurate PWVs even without surface temperature measurements. And we investigated dry bias of radiosonde measurements depending on sensor types and observation time at Sokcho weather station. After the radiosonde sensor equipment was changed from RS80-15L to GRS DFM-06, dry bias of radiosonde PWV decreased about 18.2% during daytime (KST 09:00), and 16.1% during nighttime (KST 21:00).

Determination of Weighted Mean Temperature for the GPS Precipitable Water Vapor Estimation (GPS PWV 추정을 위한 가중 평균 온도식 결정)

  • Song Dong Seob;Yun Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2004
  • Water vapor is an important parameter in monitoring changes in the Earth's climate and it can be used to improve weather forecasting. However, it haven't observed accurately by reasons of structural and economic problem of observation. GPS meteorology technique for precipitable water vapor measurement is currently actively being researched an advanced nation. Main issue of GPS meteorology is an accuracy of PWV measurement related weighted mean temperature and meteorological data. In this study, the korean weighted mean temperature had been recalculated by a linear regression method based on meteorological observations from 6 radiosonde stations for 2003 year. We examined the accuracy of PWV estimates from GPS observations and Radiosonde observations by new korean weighted mean temperature and others.

Improvement of GPS PWV retrieval capability using the reverse sea level corrections of air-pressure (기압의 역해면 경정 보정을 이용한 GPS PWV 복원 능력 개선)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.535-544
    • /
    • 2009
  • Signals from the Global Positioning System(GPS) satellite are used to retrieve the integrated amount of water vapor or the precipitable water vapor(PWV) along the path between a transmitting satellite and ground-based receiver. In order to retrieve the PWV from GPS signal delay in the troposphere, the actual zenith wet delay, which can be derived by extracting the zenith total delay and subtracting the actual zenith hydrostatic delay computed using surface pressure observing, will be needed. Since it has been not co-located between GPS permanent station and automated weather station, the air-pressure on the mean sea level has been used to determine the actual zenith hydrostatic delay. The directly use of this air-pressure has been caused the dilution of precision on GPS PWV retrieval. In this study, Korean reverse sea level correction method of air-pressure was suggested for the improving of GPS PWV retrieval capability and the accuracy of water vapor estimated by GPS was evaluated through a comparison with radiosonde PWV.

Retrieval of Remotely Sensed Fluid Velocity and Esimation of Its Accuracy by Eulerian Measurement (오일러 방법으로 원격 측정된 유체운동의 속도 산출과 정확도 평가)

  • Kim, Min-Seong;Lee, Kyung Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.151-156
    • /
    • 2021
  • The speed and direction of the earth's fluid motion is measured by a remote sensing method using electromagnetic waves. Using UHF radar and GPS Sonde, the vertical profile of fluid velocity was calculated by the Euler measurement method and the Lagrange measurement method, respectively. Since the wind direction, which is the direction of motion of the atmosphere, is indicated in the direction of the wind blowing, and a circular value of 0° - 360° is used, it is necessary to pay attention to statistical analysis. Errors caused by calculation conditions are provided, and the corrected accuracy of comparison results is improved by 400%.

ESTIMATION OF PRECIPITABLE WATER VAPOR USING THE GPS (GPS를 이용한 대류권의 수증기량 측정)

  • 문용진;최규홍;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • The radio waves transmitted from GPS satellites is delayed by the troposphere as they propagate to Earth-based GPS receivers. The troposphere delay is usually divided into two parts, the dry delay due to the atmospheric gases and the wet delay due to the water vapor. In this study for the month of May in 1998 the GPS data from two stations(Taejon, Suwon) were used to estimate the total troposphere delay in the zenith direction by the least square method. The dry delay in the zenith direction can be evaluated by using surface pressure values at the station, then the zenith wet delay is obtained by removing the zenith dry delay from the total delay. The zenith wet delay is strongly correlated with the total precipitable water. The quality of the estimate has been assessed by comparison with radiosonde data at Osan. We found the food agreement in precipitable water of the GPS estimates and the radiosonde data. The standard deviation of the difference of the difference between the GPS and radiosonde observations was 3.68mm at Suwon.

  • PDF

The Characteristic Analysis of Precipitable Water Vapor According to GPS Observation Baseline Determination (GPS 관측소 기선 처리에 따른 가강수량 특성 분석)

  • Lim, Yun-Kyu;Han, Sang-Ok;Jung, Sueng-Pil;Seong, Ji-Hye
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.626-632
    • /
    • 2013
  • In this study the GPS Precipitable Water Vapor (PWV) was derived and evaluated by a radiosode measure during the winter intensive observation in Gangneung site from January 5 till February 29 in 2012. Bernise 5.0 software was used to derive the GPS data. GPS-derived PWV from Zero difference (GANG) and Single difference (GANG and DAEJ) was high variance in time and about 5 times the PWV of radiosonde. GPS post-processing has been performed from two additional IGS site (Xian Dao, Ibaraki-ken) in order to correct the absolute troposphere errors. As a result, the mean bias error (MBE) and root mean square error (RMSE) and correlation compared with radiosonde measure were 0.67 mm, 6.40 mm, and 0.93, respectively. In order to correct the relative troposphere errors from the altitudinal difference between the two GPS receivers, we calculated the GPS-derived PWV by adding the data of GPS that was installed in Gangneung-Wonju University near the Gangwon Regional Meteorological Administration. In the end, the improved result showed that MBE, RMSE and correlation in comparison with radiosonde measures were 0.61 mm, 5.79 mm, and 0.93, respectively.

Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR (태풍 에위니아 영향력에서의 GPS 가강수량 변화 분석)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1033-1041
    • /
    • 2006
  • In this study, we calculated a space-time variation of GPS precipitable water vapor using GPS meteorology technique during a progress of the typhoon EWINIAR had made an effect on Korean peninsular at 10 July, 2006. We estimated tropospheric dry delay and wet delay for one hourly using 22 GPS permanent stations and precipitable water vapor was conversed by using surface meteorological data. The Korean weighted mean temperature and air-pressure of versa-reduction to the mean sea level have been used for an accuracy improvement of GPS precipitable water vapor estimation. Finally, we compared MTSAT water vapor image, radar image and precipitable water vapor map during a passage of the typhoon EWINIAR.

Comparison of Precipitable Water Vapor Observations by GPS, Radiosonde and NWP Simulation (GPS와 라디오존데 관측 및 수치예보 결과의 가강수량 비교)

  • Park, Chang-Geun;Baek, Jeong-Ho;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.555-566
    • /
    • 2009
  • Precipitable water vapor (PWV) derived from a numerical weather prediction (NWP) model were compared to observations derived from ground-based Global Positioning System (GPS) receivers. The model data compared were from the Weather Research and Forecasting (WRF) model short-range forecasts on nested grids. The numerical experimets were performed by selecting the cloud microphysics schemes and for the comparisons, the Changma period of 2008 was selected. The observational data were derived from GPS measurements at 9-sites in South Korea over a 1-month period, in the middle of June-July 2008. In general, the WRF model demonstrated considerable skill in reproducing the temporal and spatial evolution of the PWV as depicted by the GPS estimations. The correlation between forecasts and GPS estimates of PWV depreciated slowly with increasing forecast times. Comparing simulations with a resolution of 18 km and 6 km showed no obvious PWV dependence on resolution. Besides, GPS and the model PWV data were found to be in quite good agreement with data derived from radiosondes. These results indicated that the GPS-derived PWV data, with high temporal and spatial resolution, are very useful for meteorological applications.

다년간(2000-2008) GPS 자료를 이용한 가강수량의 연간변화경향 분석

  • Son, Dong-Hyo;Jo, Jeong-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.41.3-41.3
    • /
    • 2009
  • 우주측지 정밀도 향상을 위해 대류층 지연오차의 정확한 산출은 필수적이다. 한국천문연구원은 GPS 자료를 이용하여 대류층 지연오차 요인인 대기 중의 수증기량을 정확히 산출하는 연구를 수행하고 있다. 또한, 1999년부터 GPS 관측을 시작한 이래로 10년 이상의 연속 관측자료를 보유하고 있다. 이 연구에서는2000년부터 2008년까지 한국천문연구원의 GPS 상시관측소 5곳(서울, 대전, 목포, 밀양, 속초)의 GPS 가강수량을 산출하고 이들의 다년간 변화경향을 분석하였다. 산출된 GPS 가강수량을 라디오존데 관측값과 비교하여 신뢰도 검증하였다. 선형회귀방법을 통하여 GPS 가강수량에 대한 경향을 분석하면 관측 지역마다 기울기의 차는 있으나 전체적으로 시간이 지날수록 GPS 가강수량이 증가하는 경향을 보였다. 해당 기간동안 GPS 가강수량의 연간 변화량은 평균 0.20mm 증가하였고 목포의 경우 0.25mm로 가장 큰 변화량을 보였으며 서울이 0.16mm로 가장 작은 변화량을 보였다. 여름철 연간 변화량은 평균 0.32mm 증가하였고 겨울철은 평균 0.08mm 감소하였다. 일반적으로 기온이 상승하면 상대습도가 내려가 수증기의 증발이 활발해져 대기중의 수증기량이 증가한다. 최근 10년간 기상청의 기온은 매해 평균 $0.16^{\circ}C$씩 증가하였으며 대기 중의 수증기량과 직접적으로 연관되어 있는 GPS 가강수량의 변화 경향과 유사함을 확인하였다.

  • PDF