• Title/Summary/Keyword: GPS (Global Positioning System)

Search Result 976, Processing Time 0.028 seconds

Real-Time Location Tracking System suitable for Global Shipping Logistics (글로벌 해운물류에 적합한 실시간 화물위치 추적시스템)

  • Park, Byung-Kwon;Choi, Hyung-Rim;Kim, Jae-Joong;Lee, Jae-Kee;Kim, Chae-Soo;Lee, Kang-Bae;Park, Young-Jae;Park, Min-Seon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1207-1214
    • /
    • 2014
  • Recently it has become easier to figure out cargo positional information by using GPS(Global Positioning System) and wireless communication technology. The acceleration of globalization in the shipping logistics is ever more increasing the need to provide visibility, traceability and real time informations of entry, departure of vessel including cargo and status of logistic vehicle entry into each logistic base. Providing such positional information to logistics party by using wireless communication technology can bring effective operation of supply chain and reduction in logistics costs. In the previous paper, I suggested a global location tracking system based on GPS data in global shipping logistics by means of software using GPS data. However, the previous system had a problem of being inadequate to figure out a real time location movement information and was unsatisfactory on quickly searching and checking the location of global logistics hubs according to the longitude and latitude coordinates. Hence, in this paper, I suggest a real-time location tracking system that provided real-time location of the container cargos and logistics hubs can be searched quickly according to the GPS coordinates in global shipping logistics.

A Comparison of Broadcast and Final Orbits on GPS Delays in GPS-VLBI Hybrid Observation

  • Kwak, Younghee;Cho, Jungho;Kondo, Tetsuro;Takiguchi, Hiroshi;Amagai, Jun;Gotoh, Tadahiro;Sekido, Mamoru;Ichikawa, Ryuichi;Kim, Tuhwan;Sasao, Tetsuo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 2012
  • We carry out an error analysis of 24-hour global positioning system (GPS)-very long baseline interferometry (VLBI) (GV) hybrid observation data. In this paper, we focus on the impacts of broadcast and final orbits on the GPS delays of the GV hybrid observation by analyzing the residuals, observed - calculated (O-C) values. The residuals show apparent and consistent biases for L1 and L2 signals, respectively. The scatters of the residuals are around a few nanoseconds. The main cause of those observation errors is the absence of the GPS phase and delay calibration system. Most of the satellites show that the differences between the delays, to which broadcast and final orbits are applied, are about 100 times smaller than the current GV hybrid observation errors. We conclude that GPS delays are not greatly affected by orbit accuracies.

Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute (국토지리정보원 VRS RTK 기준망 내부 측점 측량 정확도 평가)

  • Kim, Hye-In;Yu, Gi-Sug;Park, Kwan-Dong;Ha, Ji-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • The positioning accuracies tend to deteriorate as the distance between the rover and the reference station increases in the Real-Time Kinematic (RTK) surveys using Global Positioning System (GPS). To solve this problem, the National Geographic Information Institute (NGII) of Korea has installed Virtual Reference System (VRS), which is one of the network-based RTK systems. In this study, we conducted the accuracy tests of the VRS-RTK surveys. We surveyed 50 control points inside the NGII's GPS Continuously Operating Reference Stations (CORS) network using the VRS-RTK system, and compared the results with the published coordinates to verify the positioning accuracies. We also conducted the general RTK surveys at the same control points. The results showed that the positioning accuracy of the VRS-RTK was comparable to that of the general RTK, because the horizontal positioning accuracy was 3.1 cm while that of general RTK was 2.0 cm. Also the vertical positioning accuracy of VRS-RTK was 6.8 cm.

Comparison of Calibration Methods of Phase Center Variations for Precise GPS Monument Positioning (정확한 GPS 기준국 좌표산출을 위한 위상중심 변동량 계산방법 비교)

  • Won Ji-Hye;Park Kwan-Dong;Ha Ji-Hyun;Kim Sang-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.9-14
    • /
    • 2006
  • A determinated position with GPS (Global Positioning System) data processing is the position of the phase center of a GPS antenna. The phase center of a GPS antenna is. not a stable point and depends on the azimuth and elevation angles of GPS satellites. It is known that the phase center variations (PCV) of a GPS antenna are greater in the vertical than the horizontal directions. The PCV calibration models for a GPS. antenna has two approaches: relative and absolute. In this study. we compared the two calibration models using the six operational permanent GPS stations in South Korea and analysed the PCV of each station. In addition, we. tested two different kinds of GPS antennas and compared the results. The accuracy and precision of the relative calibration was worse than the absolute calibration.

  • PDF

Development of Time-location Weighted Spatial Measures Using Global Positioning System Data

  • Han, Daikwon;Lee, Kiyoung;Kim, Jongyun;Bennett, Deborah H.;Cassady, Diana;Hertz-Picciotto, Irva
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.5.1-5.7
    • /
    • 2013
  • Objectives Despite increasing availability of global positioning system (GPS), no research has been conducted to analyze GPS data for exposure opportunities associated with time at indoor and outdoor microenvironments. We developed location-based and time-weighted spatial measures that incorporate indoor and outdoor time-location data collected by GPS. Methods Time-location data were drawn from 38 female subjects in California who wore a GPS device for seven days. Ambient standard deviational ellipse was determined based on outdoor locations and time duration, while indoor time weighted standard deviational ellipse (SDE) was developed to incorporate indoor and outdoor times and locations data into the ellipse measure. Results Our findings indicated that there was considerable difference in the sizes of exposure potential measures when indoor time was taken into consideration, and that they were associated with day type (weekday/weekend) and employment status. Conclusions This study provides evidence that time-location weighted measure may provide better accuracy in assessing exposure opportunities at different microenvironments. The use of GPS likely improves the geographical details and accuracy of time-location data, and further development of such location-time weighted spatial measure is encouraged.

A New Multi-Beam MVDR Technique for Removing Interference Signals in Array Antenna Based GPS Receivers (GPS 수신기에서 간섭신호 제거를 위한 배열 안테나 기반 다중 빔 MVDR 기법)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Yang, Gi-Jung;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.491-498
    • /
    • 2017
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military applications such as guided missiles. However, since the carrier frequencies of the GPS signals are well known and the received power is extremely low, the GPS systems are vulnerable to intentional jamming attacks. To remove jammers while maintaining GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired directions, but removes the unknown jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

Improvement of a Low Cost MEMS Inertial-GPS Integrated System Using Wavelet Denoising Techniques

  • Kang, Chang-Ho;Kim, Sun-Young;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • In this paper, the wavelet denoising techniques using thresholding method are applied to the low cost micro electromechanical system (MEMS)-global positioning system(GPS) integrated system. This was done to improve the navigation performance. The low cost MEMS signals can be distorted with conventional pre-filtering method such as low-pass filtering method. However, wavelet denoising techniques using thresholding method do not distort the rapidly-changing signals. They can reduce the signal noise. This paper verified the improvement of the navigation performance compared to the conventional pre-filtering by simulation and experiment.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

An Active Interference Cancellation Technique for Removing Jamming Signals in Array Antenna GPS Receivers (GPS 수신기에서 간섭신호에 대응하기 위한 배열 안테나기반 능동 간섭 제거 방안)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Cho, Sung-Woo;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1539-1545
    • /
    • 2015
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military systems. However, since the carrier frequencies of the GPS signals are well known, the GPS receivers are vulnerable to intentional jamming attacks. To remove jammers but maintain GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired direction, but removes the jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

Improving GPS Vertical Error Using Barometric Altimeter (기압 고도계를 이용한 GPS 수직오차 개선)

  • Kim, La-Woo;Choi, Kwang-Ho;Lim, Joon-Hoo;Yoo, Won-Jae;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Accuracy of GPS (global positioning system) deteriorates dramatically or positioning is impossible in urban area occasionally since high-rise buildings and elevated roads make the reception of navigation signal very difficult so that number of visible satellites decreases. In these cases, vertical error usually becomes much larger than the horizontal error due to the intrinsic geometry of GPS satellites. To obtain more accurate and reliable height information, this paper proposes a hybrid method that combines GPS and a low-cost barometric altimeter. In the proposed method, the sea-level pressure and the sea-surface temperature are applied to the output of the altimeter. Next, the difference between the ellipsoid and the geoid is compensated. Finally, a simple Kalman filter combines the compensated barometric altitude and the GPS height. By static and car experiments, performance of the proposed method is evaluated. By the experiment results, it can be seen that the proposed method improves the altitude accuracy considerably.