• Title/Summary/Keyword: GPS/Galileo 통합 수신기

Search Result 5, Processing Time 0.016 seconds

Interoperability Analysis of GPS and Galileo on Time (GPS와 Galileo 시각의 상호운용성 분석)

  • Shin, Mi-Young;Song, Se-Phil;Ko, Jae-Young;Yang, Sung-Hoon;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.979-984
    • /
    • 2010
  • The users who use a combined GPS/Galileo receiver will benefit from an improved availability of the combined system and a reduced dependence on one particular positioning system. However, these users must solve the problem of an offset between the time scales of GPS and Galileo (GGTO). GGTO must be analyzed for not only a navigation system but also a timing system requesting precise time service. This paper analyzes the interoperability problem in a combined GPS/Galileo timing receiver and estimates the timing performance under various assumptions. The GPS real measurements were collected by using the commercial timing receiver from Ashtech Ltd. and the Galileo measurements were generated by a simulation software. A suitable test scenario set-up and the performance in a point of timing stability was evaluated.

Implementation of the Single Channel GPS/Galileo Simulator (SIMULINK를 이용한 단채널 GPS/GALILEO 시뮬레이터 구현)

  • Yeom, In-Cheol;Im, Sung-Hyuck;Jee, Gyu-In;Ko, Sun-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.608-615
    • /
    • 2008
  • Recently, research on GNSS signal receiver, aiding system and integrated navigation system approaching to the new satellite navigation system is needed. It it necessary to develop the GNSS simulator not only to understand the new satellite navigation system but also to develop the core technology about the system. In this paper, the simulator of the GPS and Galileo satellite nagivation is developed in IF(intermediate frequency) signal level.

Precise positioning and error analysis method using GPS and GLONASS (GPS와 GLONASS를 동시에 이용하는 정밀 측위 및 오차해석)

  • Park, Chan-Sik;Song, Ha-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.74-83
    • /
    • 2004
  • The carrier phase measurements from GPS and GLONASS have different characteristics and therefore, have to be processed with different methods to provide precise positions or attitudes. In this contribution, at first, a measurement model is derived which can be used to not only GLONASS only applications but also both GPS and GLONASS applications. And then an error analysis of the proposed method performed using the derived model to derive analytic relationships between GDOP, PDOP and RGDOP. Finally, an integer ambiguity resolution method which was used in GPS is expanded to GPS and GLONASS. The proposed results can be directly applied to the design and analysis of GLONASS receiver and application programs. Furthermore, it is expected that the suggested method can also be effectively applied to combine the characteristically different measurements from the future satellite navigation systems such as GPS modernization, Galileo and QZSS.

Simulating the Availability of Integrated GNSS Positioning in Dense Urban Areas (통합 GNSS 환경에서 도시공간 위성측위의 가용성 평가 시뮬레이션)

  • Suh, Yong-Cheol;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • This paper describes the availability of the forthcoming integrated GNSS(Global Navigation Positioning System) positioning that includes GPS(Global Positioning System), Galileo, and QZSS(Quasi-Zenith Satellites System). We built a signal propagation model that identifies direct, multipath, and diffraction signals, using the principles of specular reflection and ray tracing technique. The signal propagation model was combined with 3D GIS(three-dimensional geographic information system) in order to measure the satellite visibility and positioning error factors, such as the number of visible satellites, average elevation of visible satellites, optimized DOP(dilution of position) values, and the portion of multipath-producing satellites. Since Galileo and QZSS will not be fully operational until 2010, we used a simulation in comparing GPS and GNSS positioning for a $1km{\times}1km$ developed area in Shinjuku, Tokyo. To account for local terrain variation. we divided the target area into 40,000 $5m{\times}5m$ grid cells. The number of visible satellites and that of multipath-free satellites will be greatly increased in the integrated GNSS environment while the average elevation of visible satellites will be higher in the GPS positioning. Much decreased PDOP(position dilution of precision) values indicate the appropriate satellite/user geometry of the integrated GNSS; however, in dense urban areas, multipath mitigation will be more important than the satellite/user geometry. Thus, the efforts for applying current technologies of multipath mitigation to the future GNSS environment will be necessary.