• Title/Summary/Keyword: GPS/DR integration

Search Result 13, Processing Time 0.017 seconds

Performance Improvement of GPS/DR Car Navigation System Using Vehicle Movement Information (차량 움직임 정보를 이용한 GPS/DR 차량항법시스템 성능향상)

  • Song, Jong-Hwa;Kim, Kwang-Hoon;Jee, Gyu-In;Lee, Yeon-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2010
  • This paper describes performance improvement of GPS/DR Integration system using area decision algorithm and vehicle movement information. In GPS signal blockage area, i.e., tunnel and underground parking area, DR sensor errors are accumulated and navigation solution is gradually diverged. We use the car movement information according to moving area to correct the DR sensor error. Also, vehicle movement is decided as stop, straight line, turn and movement changing region through DR sensor data analysis. The car experiment is performed to verify the supposed method. The results show that supposed method provides small position and heading error than previous method.

A Development of Attitude GPS/INS Integration System (자세 측정용 GPS/INS통합 시스템 개발)

  • Oh, Chun-Gyun;Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1984-1986
    • /
    • 2001
  • In order to provided continuous solutions, latest developing navigation systems tend to integrate GPS receiver with INS or DR. Using the GPS carrier-phase measurements, an attitude GPS receiver with three antennas obtain the 3-dimensional attitude such as roll, pitch, and heading as well as position and velocity. With these angle measurements, in the attitude GPS/INS integrated system, attitude or gyro errors can be directly compensated. In this paper, we develop an integrated navigation system that combines attitude GPS receiver with INS. The performance of real-time integrated navigation system is determined by not only the implements of integration filter but also the synchronization of measurements. To meet these real-time requirements, the navigation software is implemented in multi-tasking structure in this paper. We also employ time-synchronization technique in the multi-sensor fusion. Experimental results show that the performance of the attitude GPS/INS integrated system is consistent even when cycle-slip occurs in carrier-phase measurements.

  • PDF

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.