• Title/Summary/Keyword: GPS/DR integration

Search Result 13, Processing Time 0.024 seconds

A new GPS/DR integration filter for a car navigation system (차량항법시스템을 위한 새로운 GPS/DR Integration 필터)

  • 김세환;박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.884-887
    • /
    • 1996
  • This paper describes a GPS/DR integration filter for a car navigation system. A new GPS/DR integration filter is derived for obtaining more accurate and reliable position data. The covariance analysis results and simulation results are shown for evaluating the performance of the proposed GPS/DR integration filter.

  • PDF

A GPS/DR Integration Scheme using Carrier Measurements (반송파 정보를 이용한 GPS/DR 통합 방법)

  • Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1279-1286
    • /
    • 1999
  • In conventional GPS/DR integration schemes, the GPS position (or pseudo-range) information is used in calibrating DR sensors. In those schemes, however, an inaccurate calibration may degrade the position accuracy when the GPS measurement is not available. This paper presents a new integration scheme where the GPS velocity information is used in calibrating DR sensors. Also proposed is a new error model of DR sensors for calibrating the bias error and the tilt error in dynamic environments. The proposed model makes it possible that the errors of both the DR sensor parameters and the velocity are calibrated using the GPS carrier-based velocity(or the pseudo-range rate) measurement while the DR position error is calibrated using the GPS position measurement. Since the DR sensors are calibrated accurately, the positioning accuracy is drastically improved when the GPS measurements are unavailable.

  • PDF

An Implementation of a Decoupled GPS/DR Integration Kalman Filter (분리형 GPS/DR 통합 칼만 필터 구현)

  • Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.928-935
    • /
    • 2000
  • In order to improve the performance of a GPS/DR integration system, the error sources of DR sensors should be modeled accurately, This results in the increases in the dimension of the integration filter and, consequently, computational load becomes large. To reduce the computational load, suggested in this paper is a decoupled GPS/DR integration scheme that consists of two cascaded Kalman filters. The GPS velocity output is used in the first filter to calibrate the DR sensor and to fix the velocity as well. The velocity from the first filter is fed to the second filter where the position is corrected using the GPS position output. Experimental results show that the proposed integration scheme has positioning performance comparable to the conventional coupled one, while its computation is reduced to about 2/3.

  • PDF

A GPS/DR Integration Kalman Filter with Integration Mode (이중 모드 GPS/DR 통합 칼만필터)

  • Seo, Hung-Seok;Lee, Jae-Ho;Sung, Tae-Kyung;Lee, Sang-Jeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.269-275
    • /
    • 2001
  • In land navigation applications, two kinds of GPS/DR integration schemes are commonly used; the loosely-coupled integration scheme and the tightly-coupled one. The loosely-coupled integration filter has a simple structure and is easy to implement. When the number of visible satellites is insufficient, however, it cannot calibrate the errors of the DR sensors. On the contrary the tigthly-coupled integration filter can sup-press the growth of the error in the DR output even when the visibility is poor. However, it has larger com-putation load due to the state dimension and is inconsistent because of the variation in the measurement dimension. This paper presents a GPS/DR integration scheme with dual integration mode. During when the number of visible satellites is sufficient, the proposed scheme operates in a loosely-coupled integration mode. When the visibility becomes poor, it is switched into a tightly-coupled integration mode. Consequently, the pro-posed scheme can calibrate the DR sensors even when the visibility is poor. In addition, its computation time remains constant even if the number of visible satellites increases. Field experiment results show that the performance of the proposed integration method is almost similar to that of the tightly-coupled one.

  • PDF

Design of a navigation system using GPS and dead-reckoning (GPS와 dead-reckoning을 이용한 항법시스템 설계)

  • Kim, Jin-Won;Jee, Gyu-In;Lee, Jang-Gyu;Lee, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.188-193
    • /
    • 1996
  • In this paper, an integrated navigation system based on GPS(Global Positioning System) and Dead-Reckoning (DR) is designed. For the calibration of DR, a self-calibration method and a GPS-based calibration method are proposed. From the field-test results, it is shown that DR can be successfully calibrated by the two proposed calibration methods. Also, a cascaded filter approach and a mixed-measurement algorithm are employed for GPS/DR integration. By using the newly proposed mixed-measurement algorithm, it is shown in simulation that the position error becomes smaller than by using only DR even if the number of visible GPS satellites is less than 4.

  • PDF

GPS/DR Integration for Mobile Robot Navigation

  • Seonil Yoon;Yim, Kook-Hyun;Kim, Hyun-Soo;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.4-33
    • /
    • 2002
  • Recently, number of navigation system using GPS and other complementary sensor has been developed to offer high-position accuracy. In this paper, we developed navigation system for mobile robot integrating GPS and DR sensor information provided by fiber optic gyroscopes and encoder information. In the case of short-term applications, integrating this encoder and gyroscope through Kalman filter reliable positioning can be obtained. And for the long-term applications we developed GPS/DR Integration algorithm using Kalman filter

  • PDF

A Two-antenna GPS Receiver Integrated with Dead Reckoning Sensors (Two-antenna 자세 결정용 GPS 수신기와 DR 센서의 통합 시스템)

  • 이재호;서홍석;성태경;박찬식;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.186-186
    • /
    • 2000
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors in the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GPS receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search grace is drastically reduced to about 3120 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

An attitude determination GPS Receiver Integrated with Dead Reckoning Sensors (자세 결정용 GPS 수신기와 DR을 이용한 통합 시스템)

  • Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.72-79
    • /
    • 2001
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors of the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GP receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search space is drastically reduced to about 3/20 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

GPS and DR Navigation System for Unmanned 9round Vehicle (무인지상차량을 위한 GPS와 DR을 이용한 항법시스템)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

Improved method of positioning accuracy using GPS/DR integration DLM filter (GPS/DR 통합 DLM 필터를 이용한 위치 정확도 향상 방안)

  • Jun, Byung-Cheol;Kim, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10b
    • /
    • pp.1179-1182
    • /
    • 2001
  • 본 논문에서는 차량합법시스템에서 위치정확도 향상을 위한 방법으로 GPS/DR 통합시스템을 사용하여 DLM(Dynamic Linear Model) 알고리즘을 적용한 개선된 통합필터를 제안하였다. GPS/DR 통합 시스템의 성능을 개선하기 위해서는 DR 센서의 오류요소를 정확히 모델링 하여야 한다. GPS 로부터 위치를 계산하기 위해서는 적어도 3개 이상의 가시위성이 필요하다. 그러나 도심지에서는 고층빌딩이나 가로수 등에 의한 장애물로 인해서 3개 이상의 가시위성을 확보하기가 힘든 경우가 많다. 본 논문에서는 가시위성의 확보가 힘든 고층 빌딩이나 가로수길 등에서도 우수한 성능을 보이는 GPS 의사거리 및 의사거리율 정보를 이용하는 CPS/DR 통합 DLM 필터를 이용하여 성능을 개선시키는 방법을 제시한다.

  • PDF