• Title/Summary/Keyword: GPS(Global Positioning System

Search Result 986, Processing Time 0.022 seconds

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Wide-area Frequency-based Tripped Generator Locating Method for Interconnected Power Systems

  • Kook, Kyung-Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.776-785
    • /
    • 2011
  • Since the Internet-based real-time Global Positioning System(GPS) synchronized widearea power system frequency monitoring network (FNET) was proposed in 2001, it has been monitoring the power system frequency in interconnected United States power systems and numerous interesting behaviors have been observed, including frequency excursion propagation. We address the consistency of a frequency excursion detection order of frequency disturbance recorders in FNET in relation to the same generation trip, as well as the ability to recreate by power systems dynamic simulation. We also propose a new method, as an application of FNET measurement, to locate a tripped generator using power systems dynamic simulation and wide-area frequency measurement. The simulation database of all the possible trips of generators in the interconnected power systems is created using the off-line power systems dynamic simulation. When FNET detects a sudden drop in the monitoring frequency, which is most likely due to a generation trip in power systems, the proposed algorithm locates a tripped generator by finding the best matching case of the measured frequency excursion in the simulation database in terms of the frequency drop detection order and the time of monitoring points.

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

Design and Implementation of Real-time Shortest Path Search System in Directed and Dynamic Roads (방향성이 있는 동적인 도로에서 실시간 최단 경로 탐색 시스템의 설계와 구현)

  • Kwon, Oh-Seong;Cho, Hyung-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.649-659
    • /
    • 2017
  • Typically, a smart car is equipped with access to the Internet and a wireless local area network. Moreover, a smart car is equipped with a global positioning system (GPS) based navigation system that presents a map to a user for recommending the shortest path to a desired destination. This paper presents the design and implementation of a real-time shortest path search system for directed and dynamic roads. Herein, we attempt to simulate real-world road environments, while considering changes in the ratio of directed roads and in road conditions, such as traffic accidents and congestions. Further, we analyze the effect of the ratio of directed roads and road conditions on the communication cost between the server and vehicles and the arrival times of vehicles. In this study, we compare and analyze distance-based shortest path algorithms and driving time-based shortest path algorithms while varying the number of vehicles to search for the shortest path, road conditions, and ratio of directed roads.

Development and Analysis of Real-time Distributed Air Defense System Simulator Using a Software Framework (소프트웨어 프레임워크를 이용한 대공유도무기 실시간 분산 시뮬레이터 개발 및 분석)

  • Cho, Byung-Gyu;Youn, Cheong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.58-67
    • /
    • 2005
  • To overcome limitations of test scope, schedule and cost, M&S(Modeling & Simulation) technique has been applied for T&E(Test and Evaluation) of the state-of-art weapon systems. This paper proposes an air defense simulation software framework to reduce both redundancy an[1 programming errors in system simulator. The proposed framework consists of a 'model' and a 'middleware' The 'middleware' is a reliable communication service layer that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP, UDP and etc. The main role of 'model' is to schedule and to run the real-time distributed simulation. The proposed framework has been applied to M-SAM(Middle range Surface to Air Missile) system simulator. The proposed framework's scheduling and communication performance results are satisfactory and were measured by hardwired NTP(Network Timer Protocol) time-stamp with GPS(Global Positioning System) timer for better precision.

M&S Software Design of Multiple Radio Positioning Integration System (다중 전파측위 융복합 시스템의 M&S 소프트웨어 설계)

  • Koo, Moonsuk;Kim, YoungJoon;Choi, Kwang-Ho;So, Hyoungmin;Oh, Sang Heon;Kim, Seong-Cheol;Lee, Hyung-Keun;Hwang, Dong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.602-611
    • /
    • 2015
  • Even though GNSS provides highly accurate navigation information all over the world, it is vulnerable to jamming in the electronic warfare due to its weak signal power. The United States and Korea have plans to use terrestrial navigation systems as back-up systems during outage of GNSS. In order to develop back-up systems of GNSS, an M&S software platform is necessary for performance evaluation of various vehicle trajectories and integrated navigation systems. In this paper a design method of an M&S software is proposed for evaluation of multiple radio positioning integration systems. The proposed M&S software consists of a navigation environment generation part, a navigation algorithm part, a GUI part and a coverage analysis part. Effectiveness of the proposed design method is shown by implementing an M&S software for the GPS, DME and eLoran navigation systems.

Prediction of the Available Time for the SBAS Navigation of a Drone in Urban Canyon with Various Flight Heights (도심 지역에서의 드론 운용을 위한 비행 고도별 SBAS 보강항법 가용 시간 예측)

  • Seok, Hyo-Jeong;Park, Byung-Woon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.133-148
    • /
    • 2016
  • Voices demanding a revision of the aviation law on the operating drones are continuously rising high with the increase of their applicability in various industry fields. According to the current regulations, drones are permitted to fly under very strict conditions, which include limited places and the line-of-sight visibility from pilots. Because of the strict regulations, it is almost impossible for drones to be used in many industries such as parcel delivery services. To improve the business value of drones, we have to improve the accuracy of drones' positions and provide the proper protection levels in order to detect and avoid any risks including the collisions with the other drones. SBAS(Satellite Based Augmentation System) can support the aviation requirements with the accuracy and integrity so as to reduce the position errors and to calculate the protection levels of drones. In this paper, we assign the flight heights of drones according to the decision heights as per LAAS(Local Area Augmentation System) landing categories and conduct a simulation to predict the SBAS available time of the day.

Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device (저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP)

  • Kim, Beomsoo;Kim, Mingyu;Kim, Jeongrae;Bu, Sungchun;Lee, Chulsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • The international gnss service (IGS) provides real-time service (RTS) orbit and clock correction applicable to the broadcast ephemeris of GNSS satellites. However, since the RTS correction cannot be received if the Internet connection is lost, the RTS correction should be predicted and used when a signal interruption occurs in order to perform stable precise point positioning (PPP). In this paper, PPP was performed by predicting orbit and clock correction using a long short-term memory (LSTM) algorithm in real-time during the signal loss. The prediction performance was analyzed by implementing the LSTM algorithm in RPI (raspberry pi), the processing speed of which is not high. Compared to the polynomial prediction model, LSTM showed excellent performance in long-term prediction.

Design of Network-based AIS Reference Station System (네트워크 기반 AIS 기준국 시스템 설계)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Jeong, Ho-Cheol;Cho, Deuk-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.824-830
    • /
    • 2010
  • In order to prepare for increasing performance requirement for Differential Global Navigation Satellite System (DGNSS) services of International Maritime Organization (IMO) and International Association of Lighthouse Authorities (IALA), this paper focuses on design of network-based Automatic Identification System (AIS) reference station system that can perform the functionality of Differential Global Positioning System (DGPS) reference station in an AIS base station system. AIS base station receives the differential corrections from the DGPS reference station, and it is not a method for transmitting the received differential corrections to onboard AIS units, but it is a method for generating the optimized differential corrections for onboard AIS units in AIS coverage. Therefore this paper proposes an algorithm for generating the differential corrections at AIS reference station, and performs the performance assessment of the proposed algorithm based on DGPS correction data measured from a DGPS reference station. Finally this paper discusses the test results and efficiency of the proposed system.

Parametric Analysis of the Solar Radiation Pressure Model for Precision GPS Orbit Determination

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • The SRP (Solar Radiation Pressure) model has always been an issue in the dynamic GPS (Global Positioning System) orbit determination. The widely used CODE (Center for Orbit Determination in Europe) model and its variants have nine parameters to estimate the solar radiation pressure from the Sun and to absorb the remaining forces. However, these parameters show a very high correlation with each other and, therefore, only several of them are estimated at most of the IGS (International GNSS Service) analysis centers. In this study, we attempted to numerically verify the correlation between the parameters. For this purpose, a bi-directional, multi-step numerical integrator was developed. The correlation between the SRP parameters was analyzed in terms of post-fit residuals of the orbit. The integrated orbit was fitted to the IGS final orbit as external observations. On top of the parametric analysis of the SRP parameters, we also verified the capabilities of orbit prediction at later time epochs. As a secondary criterion for orbit quality, the positional discontinuity of the daily arcs was also analyzed. The resulting post-fit RMSE (Root-Mean-Squared Error) shows a level of 4.8 mm on average and there is no significant difference between block types. Since the once-per-revolution parameters in the Y-axis are highly correlated with those in the B-axis, the periodic terms in the D- and Y-axis are constrained to zero in order to resolve the correlations. The 6-hr predicted orbit based on the previous day yields about 3 cm or less compared to the IGS final orbit for a week, and reaches up to 6 cm for 24 hours (except for one day). The mean positional discontinuity at the boundary of two 1-day arcs is on the level of 1.4 cm for all non-eclipsing satellites. The developed orbit integrator shows a high performance in statistics of RMSE and positional discontinuity, as well as the separations of the dynamic parameters. In further research, additional verification of the reference frame for the estimated orbit using SLR is necessary to confirm the consistency of the orbit frames.