• Title/Summary/Keyword: GOCI data

Search Result 135, Processing Time 0.02 seconds

Improvement of Satellite Ocean Information Service for Offshore Marine Industry (연근해 해양산업을 위한 위성해양 정보 서비스 개선방안)

  • Cho, Bo-Hyun;Lee, Gun-Wook;Kim, Dong-Chun;Yang, Keum-Cheol;Kim, SG;Yo, Seung-jae
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • In this study, we design a marine environmental information service system with satellite images based on satellite images to reduce the damage caused by changes in the marine environment. The system provides satellite oceanographic information such as water temperature, chlorophyll, float, etc. as hierarchical texts, which is implemented as a unit module Web service so that it can be expanded in OpenAPI environment. And stability of system plug-in portability, service hours, data extraction precision and speed are used as a basis for diagnosing service stability. By securing the function and performance of the service system implemented in this study, it can be expanded to a complex technology that can customize the users by group by adding not only general services of existing systems operated by location but also information about a specific interested areas. Especially, various other items of interest including marine environment information are developed in modules, so we expect to be able to expand and service the system by plugging into the system and to spread it in technical linkage with the related institution information system.

  • PDF

Analysis of the Changesin PM2.5 Concentrations using WRF-CMAQ Modeling System: Focusing on the Fall in 2016 and 2017 (WRF-CMAQ 모델링 시스템을 활용한 PM2.5 농도변동 원인 분석: 2016년과 2017년의 가을철을 중심으로)

  • Nam, Ki-Pyo;Lim, Yong-Jae;Park, Ji-Hoon;Kim, Deok-Rae;Lee, Jae-Bum;Kim, Sang-Min;Jung, Dong-Hee;Choi, Ki-Chul;Park, Hyun-Ju;Lee, Han-Sol;Jang, Lim-Seok;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.215-231
    • /
    • 2018
  • It was analyzed to identify the cause of $PM_{2.5}$ concentration changes for the fall in 2016 and 2017 in South Korea using ground measurement data such as meterological variables and $PM_{2.5}$, AOD from GOCI satellite, and WRF-CMAQ modeling system. The result of ground measurement data showed that the $PM_{2.5}$ concentrations for the fall in 2017 decreased by 12.3% ($3.0{\mu}g/m^3$) compared to that of 2016. The difference of $PM_{2.5}$ concentrations between 2016 and 2017 mainly occurred for 11 Oct. - 20 Oct. (CASE1) and 15 Nov. - 19 Nov. (CASE2) when weather conditions were difficult to long-range transport from foreign regions and favored atmospheric ventilation in 2017 compared to 2016. Simulated $PM_{2.5}$ concentrations in 2017 decreased by 64.0% ($23.1{\mu}g/m^3$) and 35.7% ($12.2{\mu}g/m^3$) during CASE1 and CASE2, respectively. These results corresponded to the changes in observed $PM_{2.5}$ concentrations such as 53.6% for CASE1 and 47.8% for CASE2. It is implied that the changes in weather conditions affected significantly the $PM_{2.5}$ concentrations for the fall between 2016 and 2017. The contributions to decreases in $PM_{2.5}$ concentrations was assessed as 52.8% by long-range transport from foreign regions and 47.2% by atmospheric ventilation effects in domestic regions during CASE1, whereas their decreases during CASE2 were affected by 66.4% from foreign regions and 33.6% in domestic regions.

A Study on the Improvement of Satellite Image Information Service System (위성영상정보 서비스 시스템 개선방안 연구)

  • Cho, Bo-Hyun;Yang, Keum-Cheol;Kim, Song-Gang;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • The Marine Environment Observation Information System supplies oceanographic information elements such as water temperature, chlorophyll, float, etc. based on satellite images to consumers. The data produced by the Korean marine environmental observatories are located in the coastal areas of Korea. But if the range is too far from a particular area of interest, due to distance or spatial constraints, the accuracy and up-to-dateness of the data can not be relied upon. Therefore, it is necessary to perform fusion and complex operation to solve the difference between the field observation and the marine satellite image. In this study, we develop a system that can process marine environmental information in the user's area of interest in the form of layered character (numeric) information considering the readability and light weight rather than the satellite image. In order to intuitively understand satellite image information, we characterize (quantify) the marine environmental information of the area of interest and we process the satellite image band values into layered characters to minimize the absolute amount of transmitted / received data. Also we study modular location-based interest information service method to be able to flexibly extend and connect interested items that diversify various observation fields as well as application technology to serve this.

Time-series Variation of Sea Surface Salinity in the Southwestern East Sea (동해 남서부 해역 표층염분의 시계열 변동)

  • Jeong, Hee-Dong;Kim, Sang-Woo;Lim, Jin-Wook;Choi, Yong-Kyu;Park, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.163-177
    • /
    • 2013
  • An instrumented ferry made two transects per day across two current systems which are the North Korean Cold Current and the East Korean Warm Current over the years 2012-2013 from Gangneung to Ulleungdo in the southwestern East Sea. Seawater properties of these transects were measured with high spatial and temporal resolution for an extended period of time. Here the salinity records from the transects with the oceanographic observation data from East Sea Fisheries Institute of NFRDI, AVISO daily current chart and GOCI Chlorophyll-a image in 2012 and 2013 are used to study the time-series variation of salinity at the surface. The high salinity section with the range of 33.15~34.12 occurred on the transect mainly in the middle of eddy, and western boundary of strong northward current from June to October. We can found low salinity waters in both sides of the high salinity section. It is estimated that the western low salinity waters with the range of 30.58~33.20 accompanied by southward current were derived from the NKCC and the eastern waters with the range of 31.30~33.24 accompanied by northward current were derived from the Tsushima Surface Water. The lowest salinity of NKCC is confirmed in this study as 30.36. It is found that the western waters below 33.00 extended extremely toward the east about 110 km area from Gangneung and toward the south around Jukbyon coastal area as a 5~10 m layer. We can find its volume of low saline waters transport is not neglectable compared with that of Tsushima Current region in the western part of the East Sea. In this study we named it as the North Korean Low Saline Surface Water in summer.

Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 (2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향)

  • Baek, Seung Ho;Kim, Yun-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • In order to investigate the upwelling and island effects following the wind storm events in the East Sea (i.e., Uljin-Ulleungdo-Dokdo line) during spring, we assessed the vertical and horizontal profiles of abiotic and biotic factors, including phytoplankton communities. The assessment was based on the Geostationary Ocean Color Imager (GOCI) and field survey data. A strong south wind occurred on May 3, when the lowest sea level pressure (987.3 hPa) in 2016 was observed. Interestingly, after this event, huge blooms of phytoplankton were observed on May 12 along the East Korean Warm Current (EKWC), including the in the offshore waters of Ulleungdo and Dokdo. Although the diatoms dominated the EKWC area between the Uljin coastal waters and Ulleungdo, the population density of raphidophytes Heterosigma akashiwo was high in the offshore waters of Ulleungdo-Dokdo. Based on the vertical profiles of Chlorophyll-a (Chl. a), the sub-surface Chl. a maximum appeared at 20 m depths between Uljin and Ulluengdo, whereas relatively high Chl. a was distributed equally across the entire water column around the waters of Ulleungdo and Dokdo islands. This implies that the water mixing (i.e., upwelling) at the two islands, that occurred after the strong wind event, may have brought the rapid proliferation of autotrophic algae, with nutrient input, to the euphotic layer. Therefore, we have demonstrated that a strong south wind caused the upwelling event around the south-eastern Korean peninsula, which is one of the most important role in occurring the spring phytoplankton blooms along the EKWC. In addition, the phytoplankton blooms may have potentially influenced the oligotrophic waters with discrete time lags in the vicinity of Ulleungdo and Dokdo. This indicates that the phytoplankton community structure in the offshore waters of Ulleungdo-Dokdo is dependent upon the complicated water masses moving related to meandering of the EKWC.