• Title/Summary/Keyword: GNSS RO

Search Result 4, Processing Time 0.02 seconds

A Study on Improvement of the Observation Error for Optimal Utilization of COSMIC-2 GNSS RO Data (COSMIC-2 GNSS RO 자료 활용을 위한 관측오차 개선 연구)

  • Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.

A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model (한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구)

  • Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

A Novel BOC Signal Synchronization Scheme for Maritime Satellite Communications (해양 위성 통신을 위한 BOC 신호와 새로운 동기화 기법)

  • Kim, Jun-Hwan;Lee, Young-Yoon;Yoon, Seok-Ho;Choi, Myeong-Soo;Lee, Yeon-Woo;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.566-572
    • /
    • 2011
  • The satellite communication is an important method for maritime communications. Binary offset carrier (BOC) signal is a promising candidate of next generation global navigation satellite systems (GNSS). Synchronization of BOC signal is one of the most important processes to demodulate BOC signal in GNSS. However, in maritime environment, the synchronization of BOC signal is suffered from the problem of side-peak of BOC autocorrelation function and multipath fading caused by the sea surface reflection. In this paper, we proposed a novel synchronization scheme which can eliminate side-peak perfectly and is robust in multipath channel. Simulation results show that the proposed scheme has better performance than conventional schemes in multipath channel.

An Unambiguous Correlation Function to Improve Tracking Performance for Binary Offset Carrier Signals (이진 옵셋 반송파 신호 추적 성능 향상을 위한 비모호 상관함수)

  • Woo, Sunghyuk;Chae, Keunhong;Lee, Seong Ro;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1433-1440
    • /
    • 2015
  • In this paper, we propose an unambiguous correlation function to improve tracking performance for binary offset carrier (BOC) signals. Specifically, we divide a BOC sub-carrier into multiple rectangular pulses, and analyze that the BOC autocorrelation function is made up of the sum of several partial correlation functions. Then, we obtain two sub-correlation functions by combining two partial correlation functions and propose a novel unambiguous correlation function with no side-peak which can be regulated its width based on the combination of the sub-correlation functions and partial correlation functions. From numerical results, it is confirmed that the proposed correlation function provides a tracking performance improvement over the conventional correlation functions in terms of the tracking error standard deviation.