• Title/Summary/Keyword: GNPTG

Search Result 4, Processing Time 0.022 seconds

Molecular Genetics and Diagnostic Approach of Mucolipidosis II/III

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Mucolipidosis (ML) II/III are autosomal recessive diseases caused by deficiency of post-translational modification of lysosomal enzymes. The mannose-6-phosphate (M6P) residue in lysosomal enzymes synthesized by N-acetylglucosamine 1-phosphotransferase (GlcNAc-phosphotransferase) serves as recognition marker for trafficking in lysosomes. GlcNAc-phosphotransferase is encoded by GNPTAB and GNPTG. Mutations in GNPTAB cause severe ML II alpha/beta and the attenuated ML III alpha/beta. Whereas mutations in GNPTG cause the ML III gamma, the attenuated type of ML III variant. For the diagnostic approaches, increased urinary oligosaccharides excretion could be a screening test in clinically suspicious patients. To confirm the diagnosis, instead of measuring the activity of GlcNAc phosphotransferase, measuring the enzymatic activities of different lysosomal hydrolases are useful for diagnosis. The activities of several lysosomal hydrolases are decreased in fibroblasts but increased in serum of the patients. In addition, the sequence analysis of causative gene is warranted. Therefore, the confirmatory diagnosis requires a combination of clinical evaluation, biochemical and molecular genetic testing. ML II/III show complex disease manifestations with lysosomal storage as the prime cellular defect that initiates consequential organic dysfunctions. As there are no specific therapy for ML to date, understanding the molecular pathogenesis can contribute to develop new therapeutic approaches ultimately.

Recent advances in genetic studies of stuttering

  • Kang, Changsoo
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Speech and language are uniquely human-specific traits, which contributed to humans becoming the predominant species on earth. Disruptions in the human speech and language function may result in diverse disorders. These include stuttering, aphasia, articulation disorder, spasmodic dysphonia, verbal dyspraxia, dyslexia and specific language impairment. Among these disorders, stuttering is the most common speech disorder characterized by disruptions in the normal flow of speech. Twin, adoption, and family studies have suggested that genetic factors are involved in susceptibility to stuttering. For several decades, multiple genetic studies including linkage analysis were performed to connect causative gene to stuttering, and several genetic studies have revealed the association of specific gene mutation with stuttering. One notable genetic discovery came from the genetic studies in the consanguineous Pakistani families. These studies suggested that mutations in the lysosomal enzyme-targeting pathway genes (GNPTAB, GNPTG and NAPGA) are associated with non-syndromic persistent stuttering. Although these studies have revealed some clues in understanding the genetic causes of stuttering, only a small fraction of patients are affected by these genes. In this study, we summarize recent advances and future challenges in an effort to understand genetic causes underlying stuttering.

Overview of Mucolipidosis Type II and Mucolipidosis Type III α/β

  • Kim, Su Jin
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Mucolipidosis type II (MLII; MIM#252500) and type III alpha/beta (MLIIIA; MIM#252600) very rare lysosomal storage disease cause by reduced enzyme activity of GlcNAc-1-phosphotransferase. ML II is caused by a total or near total loss of GlcNAc-1-phosphotransferase activity whether enzymatic activity in patient with ML IIIA is reduced. While ML II and ML III share similar clinical features, including skeletal abnormalities, ML II is the more severe in terms of phenotype. ML III is a much milder disorder, being characterized by latter onset of clinical symptoms and slower progressive course. GlcNAc-1-phosphotransferase is encoded by two genes, GNPTAB and GNPTG, mutations in GNPTAB give rise to ML II or ML IIIA. To date, more than 100 different GNPTAB mutations have been reported, causing either ML II or ML IIIA. Despite development of new diagnostic approach and understanding of disease mechanism, there is no specific treatment available for patients with ML II and ML IIIA yet, only supportive and symptomatic treatment is indicated.

Progress, challenges, and future perspectives in genetic researches of stuttering

  • Kang, Changsoo
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • Speech and language functions are highly cognitive and human-specific features. The underlying causes of normal speech and language function are believed to reside in the human brain. Developmental persistent stuttering, a speech and language disorder, has been regarded as the most challenging disorder in determining genetic causes because of the high percentage of spontaneous recovery in stutters. This mysterious characteristic hinders speech pathologists from discriminating recovered stutters from completely normal individuals. Over the last several decades, several genetic approaches have been used to identify the genetic causes of stuttering, and remarkable progress has been made in genome-wide linkage analysis followed by gene sequencing. So far, four genes, namely GNPTAB, GNPTG, NAGPA, and AP4E1, are known to cause stuttering. Furthermore, thegeneration of mouse models of stuttering and morphometry analysis has created new ways for researchers to identify brain regions that participate in human speech function and to understand the neuropathology of stuttering. In this review, we aimed to investigate previous progress, challenges, and future perspectives in understanding the genetics and neuropathology underlying persistent developmental stuttering.