• Title/Summary/Keyword: GMR(giant magnetoresistance)-SV(spin valve) device

Search Result 13, Processing Time 0.015 seconds

Shape Magnetic Anisotropy on Magnetic Easy Axis of NiFe/Cu/NiFe/IrMn Spin Valve Thin Film (NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자의 자화 용이축에 따른 형상 자기이방성)

  • Choi, Jong-Gu;Kwak, Tae-Joon;Lee, Sang-Suk;Sim, Jung-Taek
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • The GMR-SV (giant magnetoresistance-spin valve) device depending on the micro patterned features according to two easy directions of longitudinal and transversal axes has been studied. The GMR-SV multilayer structure was Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm). The applied anisotropy direction of the GMR-SV thin film was performed under the magnitude of 300 Oe using by permanent magnet during the deposition. The size of micro patterned device was a $1\;{\times}\;18\;{\mu}m^2$ after the photo lithography process. In the aspects of the shape magnetic anisotropy effect, there are two conditions of fabrication for GMR-SV device. Firstly, the direction of sensing current was perpendicular to the magnetic easy axis of the pinned NiFe/IrMn bilayer with the transversal direction of device. Secondly, the direction of shape magnetic anisotropy was same to the magnetic easy axis of the free NiFe layer with the longitudinal direction of device.

Fabrication and Performance of Electron Cyclotron Resonance Ion Milling System for Etching of Magnetic Film Device (자성박막 소자 에칭용 전자 사이클로트론 공명 이온밀링 시스템 제작과 특성연구)

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.149-155
    • /
    • 2015
  • The ECR (Electron Cyclotron Resonance) Ar ion milling was manufactured to fabricate the device of thin film. The ECR ion milling system applied to the device etching operated by a power of 600W, a frequency of 2.45 GHz, and a wavelength of 12.24 cm and transferred by a designed waveguide. In order to match one resonant frequency, a magnetic field of 908 G was applied to a cavity inside of ECR. The Ar gas intruded into a cavity and created the discharged ion beam. The surface of target material was etched by the ion beam having an acceleration voltage of 1000 V. The formed devices with a width of $1{\mu}m{\sim}9{\mu}m$ on the GMR-SV (Giant magnetoresistance-spin valve) multilayer after three major processes such as photo lithography, ion milling, and electrode fabrication were observed by the optical microscope.

Characteristics of Mineral Mg Dissolving Sensor in Edible Water using GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 음용수 미네랄 Mg 용해센서 특성 연구)

  • Lee, Ju-Hee;Kim, Da-Woon;Kim, Min-Ji;Park, Kwang-Seo;Kang, Joon-Ho;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.174-179
    • /
    • 2008
  • The measurement dissolution sensor system using GMR-SV device with magnetic sensitivity of 0.8 %/Oe and Mg-film thick of 200 nm and Mg-foil thick of 50 mm was fabricated and characterized. During the water dissolving process of Mg-film and Mg-foil, the subtle variation of magnetic field by the decrease of current in solenoid was detected by the GMR-SV sensor. The variations of Mg bubble number and ORP as a function of time for three different kinds of edible, tap, and distilled water, are measured and compared. A After 45 min, the speed of fast dissolving Mg was shown the order of edible > tap > DI water. The variation of output magnetoresistance as a function of dissolved time of Mg-film and Mg-foil for edible water, which is composed of mineral content of $0.8{\sim}5.4\;mg/l$ was investigated. The response times for the dissolution in edible water were 5 min and 20 min, respectively. From the measurement of dissolving time and speed for Mg-film and Mg-foil using GMR-SV device, the mineral Mg sensor system in edible water can be possible to develop.