• Title/Summary/Keyword: GMM-EM 기반 분류

Search Result 4, Processing Time 0.02 seconds

Speech/Mixed Content Signal Classification Based on GMM Using MFCC (MFCC를 이용한 GMM 기반의 음성/혼합 신호 분류)

  • Kim, Ji-Eun;Lee, In-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • In this paper, proposed to improve the performance of speech and mixed content signal classification using MFCC based on GMM probability model used for the MPEG USAC(Unified Speech and Audio Coding) standard. For effective pattern recognition, the Gaussian mixture model (GMM) probability model is used. For the optimal GMM parameter extraction, we use the expectation maximization (EM) algorithm. The proposed classification algorithm is divided into two significant parts. The first one extracts the optimal parameters for the GMM. The second distinguishes between speech and mixed content signals using MFCC feature parameters. The performance of the proposed classification algorithm shows better results compared to the conventionally implemented USAC scheme.

Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Based on GMM (3GPP2 SMV의 실시간 음성/음악 분류 성능 향상을 위한 Gaussian Mixture Model의 적용)

  • Song, Ji-Hyun;Lee, Kye-Hwan;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.390-396
    • /
    • 2007
  • In this letter, we propose a novel approach to improve the performance of speech/music classification for the selectable mode vocoder(SMV) of 3GPP2 using the Gaussian mixture model(GMM) which is based on the expectation-maximization(EM) algorithm. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then feature vectors which are applied to the GMM are selected from relevant Parameters of the SMV for the efficient speech/music classification. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder (오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류)

  • Sangkil Lee;In-Sung Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.239-246
    • /
    • 2023
  • In this paper, we propose an open-loop algorithm to classify speech and music signals using the spectral flux parameters and Mel Frequency Cepstral Coefficients(MFCC) parameters for the audio coder. To increase responsiveness, the MFCC was used as a short-term feature parameter and spectral fluxes were used as a long-term feature parameters to improve accuracy. The overall voice/music signal classification decision is made by combining the short-term classification method and the long-term classification method. The Gaussian Mixed Model (GMM) was used for pattern recognition and the optimal GMM parameters were extracted using the Expectation Maximization (EM) algorithm. The proposed long-term and short-term combined speech/music signal classification method showed an average classification error rate of 1.5% on various audio sound sources, and improved the classification error rate by 0.9% compared to the short-term single classification method and 0.6% compared to the long-term single classification method. The proposed speech/music signal classification method was able to improve the classification error rate performance by 9.1% in percussion music signals with attacks and 5.8% in voice signals compared to the Unified Speech Audio Coding (USAC) audio classification method.

Railway Track Extraction from Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구)

  • Yoonseok, Jwa;Gunho, Sohn;Jong Un, Won;Wonchoon, Lee;Nakhyeon, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.111-122
    • /
    • 2015
  • This study purposed on introducing a new automated solution for detecting railway tracks and reconstructing track models from the mobile laser scanning data. The proposed solution completes following procedures; the study initiated with detecting a potential railway region, called Region Of Interest (ROI), and approximating the orientation of railway track trajectory with the raw data. At next, the knowledge-based detection of railway tracks was performed for localizing track candidates in the first strip. In here, a strip -referring the local track search region- is generated in the orthogonal direction to the orientation of track trajectory. Lastly, an initial track model generated over the candidate points, which were detected by GMM-EM (Gaussian Mixture Model-Expectation & Maximization) -based clustering strip- wisely grows to capture all track points of interest and thus converted into geometric track model in the tracking by detection framework. Therefore, the proposed railway track tracking process includes following key features; it is able to reduce the complexity in detecting track points by using a hypothetical track model. Also, it enhances the efficiency of track modeling process by simultaneously capturing track points and modeling tracks that resulted in the minimization of data processing time and cost. The proposed method was developed using the C++ program language and was evaluated by the LiDAR data, which was acquired from MMS over an urban railway track area with a complex railway scene as well.