• Title/Summary/Keyword: GMM System

검색결과 194건 처리시간 0.093초

GMM 지원을 위해 k-means 알고리즘을 이용한 어휘 인식 성능 개선 (Vocabulary Recognition Performance Improvement using k-means Algorithm for GMM Support)

  • 이종섭
    • 디지털융복합연구
    • /
    • 제13권2호
    • /
    • pp.135-140
    • /
    • 2015
  • 일반적인 CHMM 어휘 인식 시스템은 어휘 인식에 대한 모델들의 관측 확률 인식률이 낮고, 일부 단위 음소 모델에만 적용되어 제한적으로 사용되는 문제점이 있다. 또한, 어휘 탐색에서 어휘의 의미가 다양하여 탐색된 어휘가 사용자의 요구에 부합되지 않는 문제점을 가진다. 이러한 문제를 개선하기 위해 GMM(Gaussian Mixture Model)을 이용한 음소인식을 수행하고, 개선된 k-means 알고리즘을 이용하여 어휘 특성에 따른 제한적인 탐색 문제점을 해결하였다. 성능 실험은 기존의 시스템과 비교하여 정확도와 재현율로 대변되는 효과성을 측정하였으며, 성능 실험 결과 정확도는 83%, 재현율은 67%로 나타났다.

음향 데이터 전송 시스템의 강인한 데이터 검출 성능을 위한 Gaussian Mixture Model 기반 연구 (Data Detection Algorithm Based on GMM in the Acoustic Data Transmission System)

  • 송지현;장준혁;김문기;김동건
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.136-141
    • /
    • 2011
  • 본 논문에서는 패턴 인식에서 우수한 성능을 보여주는 가우시안 혼합 모델을 이용하여 MCLT 기반 음향 데이터 전송 시스템의 데이터 검출 성능 향상을 위한 방법을 제안하였다. 기존의 MCLT 기반 음향 데이터 전송 시스템에 대해서 분석하고, 이를 기반으로 데이터 검출 알고리즘에서 우수한 성능을 보여주는 특징 벡터를 선택하여 GMM의 입력 벡터로 효과적으로 이용한다. 다양한 음원(rock, pop, classic, jazz)과 마이크-스피커 사이의 거리 (1∼5m)에서 시스템의 성능을 평가한 결과 GMM을 이용한 제안된 방법이 기존의 MCLT 기반 음향 데이터 전송 시스템의 데이터 검출 알고리즘보다 더욱 우수한 데이터 검출 성능을 보였다.

GMM을 이용한 화자 및 문장 독립적 감정 인식 시스템 구현 (Speaker and Context Independent Emotion Recognition System using Gaussian Mixture Model)

  • 강면구;김원구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2463-2466
    • /
    • 2003
  • This paper studied the pattern recognition algorithm and feature parameters for emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used lot speaker and context independent recognition. The speech parameters used as the feature are pitch, energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and their derivatives as a feature showed better performance than that using the Pitch and energy Parameters. For pattern recognition algorithm, GMM based emotion recognizer was superior to KNN and VQ based recognizer

  • PDF

평탄도 측정을 이용한 GMM 얼굴인식기 구현 및 성능향상 (Implementation and Enhancement of GMM Face Recognition System using Flatness Measure)

  • 천영하;고대영;김진영;백성준
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2004-2007
    • /
    • 2003
  • This paper describes a method of performance enhancement using Flatness Mesure(FM) for the Gaussian Mixture Model(GMM) face recognition systems. Using this measure we discard the frames having low information before training and test. As the result, the performance increases about 9% in the lower mixtures and calculation burden is decreased. As well, the recognition error rate is decreased under the illumination change surroundings. We use the 2D DCT coefficients lot face feature vectors and experiments are carried out on the Olivetti Research Laboratory (ORL) face database.

  • PDF

음성신호의 대역폭 확장을 위한 GMM 방법 및 HMM 방법의 성능평가 (Performance Comparison of GMM and HMM Approaches for Bandwidth Extension of Speech Signals)

  • 송근배;김석호
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.119-128
    • /
    • 2008
  • 본 논문에서는 대역폭 확장 (Bandwidth Extension, BWE)을 위한 대표적인 통계적 방법인 가우스 혼합 모델 (Gaussian Mixture Model, GMM) 방법과 은닉마코프 모델 (Hidden Markov Model, HMM) 방법의 관계를 분석하고 성능을 비교한다. HMM 방법은 GMM 방법과 달리 기억능력을 가진 시스템으로서 인접한 음성 프레임간의 상관성을 모델링하고 이를 BWE 시스템에 활용한다는 장점을 가진다. 따라서 원래 신호의 프레임간 스펙트럼 변화특성을 보다 잘 추정할 수 있으리라 예상할 수 있다. 이 점을 확인하기 위해 정적 측도 외에 음성 스펙트럼의 일차 도 함수와 관련된 동적 측도를 적용하였다. 성능평가 결과, 정적 측도 관점에서는 두 방법은 대등한 성능을 보였지만 동적 측도 관점에서는 HMM 방법이 우수한 성능을 보였다. 또한 이러한 차이는 HMM 모델의 상태 수에 비례하여 증가함을 확인할 수 있었다. 이와 같은 실험결과는 HMM 방법이 적어도 'blind BWE' 문제에 있어서 적절한 해법임을 시사한다. 한편, 동적 측도의 관점에서는 비록 열세로 나타났지만 GMM 방법은 상대적으로 단순하다는 장점을 가지고 있으며 특히, 정적 측도에 있어서 HMM 방법과 대등하다는 사실은 응용분야에 따라서는 HMM 방법의 효과적인 대안이 될 수 있음을 시사한다.

휴대용 화자확인시스템을 위한 배경화자모델 설계에 관한 연구 (A Study on Background Speaker Model Design for Portable Speaker Verification Systems)

  • 최홍섭
    • 음성과학
    • /
    • 제10권2호
    • /
    • pp.35-43
    • /
    • 2003
  • General speaker verification systems improve their recognition performances by normalizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. So these systems rely heavily on the availability of much speaker independent databases for background speaker model design. This constraint, however, may be a burden in practical and portable devices such as palm-top computers or wireless handsets which place a premium on computations and memory. In this paper, new approach for the GMM-based background model design used in portable speaker verification system is presented when the enrollment data is available. This approach is to modify three parameters of GMM speaker model such as mixture weights, means and covariances along with reduced mixture order. According to the experiment on a 20 speaker population from YOHO database, we found that this method had a promise of effective use in a portable speaker verification system.

  • PDF

AEO MRA가 무역비용에 미치는 영향 (The Effect of AEO MRA on Trade Cost)

  • 하의현
    • 무역학회지
    • /
    • 제45권2호
    • /
    • pp.17-29
    • /
    • 2020
  • This study analyzed that the effects of AEO MRA benefit on decreasing of trade cost and the strategies for expanding of trade. It uses the system GMM for effective solutions of endogenous matter with lagged dependent variable. In terms of the result of analysis, AEO MRA has a positive effect on decreasing of trade cost, especially this study proved the result of previous study AEO MRA expanded the trade through improving the time required for customs clearance and deregulation of non-tariff barriers. In conclusion, this study proposes the policy fo AEO MRA by analyzing the trade cost of AEO MRA by using the system GMM.

GMM을 이용한 MFCC로부터 복원된 음성의 개선 (Improvement of Speech Reconstructed from MFCC Using GMM)

  • 최원영;최무열;김형순
    • 대한음성학회지:말소리
    • /
    • 제53호
    • /
    • pp.129-141
    • /
    • 2005
  • The goal of this research is to improve the quality of reconstructed speech in the Distributed Speech Recognition (DSR) system. For the extended DSR, we estimate the variable Maximum Voiced Frequency (MVF) from Mel-Frequency Cepstral Coefficient (MFCC) based on Gaussian Mixture Model (GMM), to implement realistic harmonic plus noise model for the excitation signal. For the standard DSR, we also make the voiced/unvoiced decision from MFCC based on GMM because the pitch information is not available in that case. The perceptual test reveals that speech reconstructed by the proposed method is preferred to the one by the conventional methods.

  • PDF

GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법 (Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM)

  • 김민정;석수영;김광수;정호열;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.512-522
    • /
    • 2002
  • 본 논문에서는 GMM(Gaussian Mixture Model)에 기반한 실시간문맥독립화자식별시스템[1][2]의 성능향상을 위하여 프레임선택(Frame Selection)방법과 프레임가중치(Weighting Model Rank)방법을 혼합한 hybrid방법을 제안한다. 본 시스템에서는 GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법과 인식 알고리즘으로 ML(Maximum Likelihood)을 기본적으로 사용하였다. 제안한 hybrid 방법은 두 단계로 이루어진다. 첫째, 화자모델과 테스트 데이터를 이용하여 프레임단위로 유사도를 계산하고, 가장 큰 유사도 값과 두 번째로 큰 유사도 값의 차를 계산한 후, 차가 문턱치보다 큰 프레임만을 선택한다 두 번째로, 선택되어진 프레임에서 계산되어진 유사도 값 대신에 가중치 값을 사용하여 전체 스코어를 계산한다. 특징 파라미터로서는 켑스트럼과 회귀계수를 사용하였으며, 학습과 테스트를 위한 데이터베이스는 채집기간이 다른 여러 데이터베이스들로 구성되어 있으며, 실험을 위한 데이터는 임의의 단어를 선택하여 사용하였다. 화자인식실험은 기본 시스템에 프레임선택방법, 프레임가중치방법, 제안한 Hybrid방법을 각각 적용하여 실험하였다. 실험결과, 프레임선택방법에 비해 평균 4%, 프레임가중치방법에 비해 평균 1%의 인식률 향상을 보여, 본 논문에서 적용한 hybrid방법의 유효성을 확인하였다.

  • PDF

GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering)

  • 오상엽
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.35-39
    • /
    • 2020
  • DNN은 기존의 음성 인식 시스템에 비해 에러가 적으나 병렬 훈련이 어렵고, 계산의 양이 많으며, 많은 양의 데이터 확보를 필요로 한다. 본 논문에서는 이러한 문제를 효율적으로 해결하기 위해 GMM에서 모델 파라메터를 가지고 음소별 GMM 파라메터를 추정하여 음소 단위를 생성한다. 그리고 이를 효율적으로 적용하기 위해 특정 어휘에 대한 클러스터링을 통해 성능을 향상시키기 위한 방법을 제안한다. 이를 위해 3가지 종류의 단어 음성 데이터베이스를 이용하여 DB를 가지고 어휘 모델을 구축하였고, 잡음 처리는 워너필터를 사용한 특징을 추출하여 음성 인식실험에 사용하였다. 본 논문에서 제안한 방법을 사용한 결과 음성 인식률에서 97.9%의 인식률을 나타내었다. 본 연구에서 개선된 오버피팅의 문제점을 향상시킬 수 있는 추가적인 연구를 필요로 한다.