일반적인 CHMM 어휘 인식 시스템은 어휘 인식에 대한 모델들의 관측 확률 인식률이 낮고, 일부 단위 음소 모델에만 적용되어 제한적으로 사용되는 문제점이 있다. 또한, 어휘 탐색에서 어휘의 의미가 다양하여 탐색된 어휘가 사용자의 요구에 부합되지 않는 문제점을 가진다. 이러한 문제를 개선하기 위해 GMM(Gaussian Mixture Model)을 이용한 음소인식을 수행하고, 개선된 k-means 알고리즘을 이용하여 어휘 특성에 따른 제한적인 탐색 문제점을 해결하였다. 성능 실험은 기존의 시스템과 비교하여 정확도와 재현율로 대변되는 효과성을 측정하였으며, 성능 실험 결과 정확도는 83%, 재현율은 67%로 나타났다.
본 논문에서는 패턴 인식에서 우수한 성능을 보여주는 가우시안 혼합 모델을 이용하여 MCLT 기반 음향 데이터 전송 시스템의 데이터 검출 성능 향상을 위한 방법을 제안하였다. 기존의 MCLT 기반 음향 데이터 전송 시스템에 대해서 분석하고, 이를 기반으로 데이터 검출 알고리즘에서 우수한 성능을 보여주는 특징 벡터를 선택하여 GMM의 입력 벡터로 효과적으로 이용한다. 다양한 음원(rock, pop, classic, jazz)과 마이크-스피커 사이의 거리 (1∼5m)에서 시스템의 성능을 평가한 결과 GMM을 이용한 제안된 방법이 기존의 MCLT 기반 음향 데이터 전송 시스템의 데이터 검출 알고리즘보다 더욱 우수한 데이터 검출 성능을 보였다.
This paper studied the pattern recognition algorithm and feature parameters for emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used lot speaker and context independent recognition. The speech parameters used as the feature are pitch, energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and their derivatives as a feature showed better performance than that using the Pitch and energy Parameters. For pattern recognition algorithm, GMM based emotion recognizer was superior to KNN and VQ based recognizer
This paper describes a method of performance enhancement using Flatness Mesure(FM) for the Gaussian Mixture Model(GMM) face recognition systems. Using this measure we discard the frames having low information before training and test. As the result, the performance increases about 9% in the lower mixtures and calculation burden is decreased. As well, the recognition error rate is decreased under the illumination change surroundings. We use the 2D DCT coefficients lot face feature vectors and experiments are carried out on the Olivetti Research Laboratory (ORL) face database.
본 논문에서는 대역폭 확장 (Bandwidth Extension, BWE)을 위한 대표적인 통계적 방법인 가우스 혼합 모델 (Gaussian Mixture Model, GMM) 방법과 은닉마코프 모델 (Hidden Markov Model, HMM) 방법의 관계를 분석하고 성능을 비교한다. HMM 방법은 GMM 방법과 달리 기억능력을 가진 시스템으로서 인접한 음성 프레임간의 상관성을 모델링하고 이를 BWE 시스템에 활용한다는 장점을 가진다. 따라서 원래 신호의 프레임간 스펙트럼 변화특성을 보다 잘 추정할 수 있으리라 예상할 수 있다. 이 점을 확인하기 위해 정적 측도 외에 음성 스펙트럼의 일차 도 함수와 관련된 동적 측도를 적용하였다. 성능평가 결과, 정적 측도 관점에서는 두 방법은 대등한 성능을 보였지만 동적 측도 관점에서는 HMM 방법이 우수한 성능을 보였다. 또한 이러한 차이는 HMM 모델의 상태 수에 비례하여 증가함을 확인할 수 있었다. 이와 같은 실험결과는 HMM 방법이 적어도 'blind BWE' 문제에 있어서 적절한 해법임을 시사한다. 한편, 동적 측도의 관점에서는 비록 열세로 나타났지만 GMM 방법은 상대적으로 단순하다는 장점을 가지고 있으며 특히, 정적 측도에 있어서 HMM 방법과 대등하다는 사실은 응용분야에 따라서는 HMM 방법의 효과적인 대안이 될 수 있음을 시사한다.
General speaker verification systems improve their recognition performances by normalizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. So these systems rely heavily on the availability of much speaker independent databases for background speaker model design. This constraint, however, may be a burden in practical and portable devices such as palm-top computers or wireless handsets which place a premium on computations and memory. In this paper, new approach for the GMM-based background model design used in portable speaker verification system is presented when the enrollment data is available. This approach is to modify three parameters of GMM speaker model such as mixture weights, means and covariances along with reduced mixture order. According to the experiment on a 20 speaker population from YOHO database, we found that this method had a promise of effective use in a portable speaker verification system.
This study analyzed that the effects of AEO MRA benefit on decreasing of trade cost and the strategies for expanding of trade. It uses the system GMM for effective solutions of endogenous matter with lagged dependent variable. In terms of the result of analysis, AEO MRA has a positive effect on decreasing of trade cost, especially this study proved the result of previous study AEO MRA expanded the trade through improving the time required for customs clearance and deregulation of non-tariff barriers. In conclusion, this study proposes the policy fo AEO MRA by analyzing the trade cost of AEO MRA by using the system GMM.
The goal of this research is to improve the quality of reconstructed speech in the Distributed Speech Recognition (DSR) system. For the extended DSR, we estimate the variable Maximum Voiced Frequency (MVF) from Mel-Frequency Cepstral Coefficient (MFCC) based on Gaussian Mixture Model (GMM), to implement realistic harmonic plus noise model for the excitation signal. For the standard DSR, we also make the voiced/unvoiced decision from MFCC based on GMM because the pitch information is not available in that case. The perceptual test reveals that speech reconstructed by the proposed method is preferred to the one by the conventional methods.
본 논문에서는 GMM(Gaussian Mixture Model)에 기반한 실시간문맥독립화자식별시스템[1][2]의 성능향상을 위하여 프레임선택(Frame Selection)방법과 프레임가중치(Weighting Model Rank)방법을 혼합한 hybrid방법을 제안한다. 본 시스템에서는 GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법과 인식 알고리즘으로 ML(Maximum Likelihood)을 기본적으로 사용하였다. 제안한 hybrid 방법은 두 단계로 이루어진다. 첫째, 화자모델과 테스트 데이터를 이용하여 프레임단위로 유사도를 계산하고, 가장 큰 유사도 값과 두 번째로 큰 유사도 값의 차를 계산한 후, 차가 문턱치보다 큰 프레임만을 선택한다 두 번째로, 선택되어진 프레임에서 계산되어진 유사도 값 대신에 가중치 값을 사용하여 전체 스코어를 계산한다. 특징 파라미터로서는 켑스트럼과 회귀계수를 사용하였으며, 학습과 테스트를 위한 데이터베이스는 채집기간이 다른 여러 데이터베이스들로 구성되어 있으며, 실험을 위한 데이터는 임의의 단어를 선택하여 사용하였다. 화자인식실험은 기본 시스템에 프레임선택방법, 프레임가중치방법, 제안한 Hybrid방법을 각각 적용하여 실험하였다. 실험결과, 프레임선택방법에 비해 평균 4%, 프레임가중치방법에 비해 평균 1%의 인식률 향상을 보여, 본 논문에서 적용한 hybrid방법의 유효성을 확인하였다.
DNN은 기존의 음성 인식 시스템에 비해 에러가 적으나 병렬 훈련이 어렵고, 계산의 양이 많으며, 많은 양의 데이터 확보를 필요로 한다. 본 논문에서는 이러한 문제를 효율적으로 해결하기 위해 GMM에서 모델 파라메터를 가지고 음소별 GMM 파라메터를 추정하여 음소 단위를 생성한다. 그리고 이를 효율적으로 적용하기 위해 특정 어휘에 대한 클러스터링을 통해 성능을 향상시키기 위한 방법을 제안한다. 이를 위해 3가지 종류의 단어 음성 데이터베이스를 이용하여 DB를 가지고 어휘 모델을 구축하였고, 잡음 처리는 워너필터를 사용한 특징을 추출하여 음성 인식실험에 사용하였다. 본 논문에서 제안한 방법을 사용한 결과 음성 인식률에서 97.9%의 인식률을 나타내었다. 본 연구에서 개선된 오버피팅의 문제점을 향상시킬 수 있는 추가적인 연구를 필요로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.