Recently, Gaussian Mixture Model (GMM), a special form of CHMM, has been applied to speaker identification and it has proved that performance of GMM is better than CHMM. Therefore, in this paper the speaker models based on GMM and a new GMM using the modified EM algorithm are introduced and evaluated for text-independent speaker identification. Various experiments were performed to evaluate identification performance of two algorithms. As a result of the experiments, the GMM speaker model attained 94.6% identification accuracy using 40 seconds of training data and 32 mixtures and 97.8% accuracy using 80 seconds of training data and 64 mixtures. On the other hand, the new GMM speaker model achieved 95.0% identification accuracy using 40 seconds of training data and 32 mixtures and 98.2% accuracy using 80 seconds of training data and 64 mixtures. It shows that the new GMM speaker identification performance is better than the GMM speaker identification performance.
In this paper, we construct phonetic GMM for text-independent speaker identification system. The basic idea is to combine of the advantages of baseline GMM and HMM. GMM is more proper for text-independent speaker identification system. In text-dependent system, HMM do work better. Phonetic GMM represents more sophistgate text-dependent speaker model based on text-independent speaker model. In speaker identification system, phonetic GMM using HMM-based speaker-independent phoneme recognition results in better performance than baseline GMM. In addition to the method, N-best recognition algorithm used to decrease the computation complexity and to be applicable to new speakers.
본 논문에서는 Gaussian Mixture Model (GMM)-supervector의 Mahalanobis 거리측정 방법 기반의 Support Vector Machine (SVM) 커널을 이용한 새로운 화자인증 방법을 제안한다. 제안된 GMM-supervector SVM 커널방식은 GMM 방식과 SVM 방식을 결합한 방식으로서, GMM 파라미터에 의해 형성된 화자 및 비 화자 GMM-supervectors의 화자인증 임계값을 Mahalanobis 거리측정 방법기반의 SVM 커널에 적용함으로써 화자인증 정확도를 높인다. 제안한 방식의 성능 측정을 위해 20명의 화자를 대상으로 문장독립형 화자인증 실험을 수행하여 기존에 사용되고 있는 GMM, SVM, Kullback-Leibler (KL) divergence 거리측정 방법 기반의 GMM-supervector SVM 커널, Bhattacharyya 거리측정 방법기반의 GMM-supervector SVM 커널 방식을 통한 화자인증 결과들과 비교하였다.
General speaker verification systems improve their recognition performances by normalizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. So these systems rely heavily on the availability of much speaker independent databases for background speaker model design. This constraint, however, may be a burden in practical and portable devices such as palm-top computers or wireless handsets which place a premium on computations and memory. In this paper, new approach for the GMM-based background model design used in portable speaker verification system is presented when the enrollment data is available. This approach is to modify three parameters of GMM speaker model such as mixture weights, means and covariances along with reduced mixture order. According to the experiment on a 20 speaker population from YOHO database, we found that this method had a promise of effective use in a portable speaker verification system.
In general, Gaussian mixture model(GMM) is used to estimate the speaker model for speaker identification. The parameter estimates of the GMM are obtained by using the expectation-maximization (EM) algorithm for the maximum likelihood(ML) estimation. However, if the number of mixtures isn't defined well in the GMM, those parameters are obtained inappropriately. The problem to find the number of components is significant to estimate the optimal parameter in mixture model. In this paper, to estimate the optimal number of mixtures, we propose the method that starts from the sufficient mixtures, after, the number is reduced by investigating the mutual information between mixtures for GMM. In result, we can estimate the optimal number of mixtures. The effectiveness of the proposed method is shown by the experiment using artificial data. Also, we performed the speaker identification applying the proposed method comparing with other approaches.
In this paper, we present a single framework based on GMM for speaker recognition. The proposed framework can simultaneously minimize environmental variations on mismatched conditions and adapt the bias free and speaker-dependent characteristics of claimant utterances to the background GMM to create a speaker model. We compare the closed-set speaker identification for conventional method and the proposed method both on TIMIT and NTIMIT. In the several sets of experiments we show the improved recognition rates on a simulated channel and a telephone channel condition by 7.2% and 27.4% respectively.
화자독립 음성인식기의 화자 정규화를 위해 GMM(Gaussian mixture model)분포를 이용하는 방법에 대해 실험한다. 이 방법은 벡터 양자화기를 이용한 선행 연구를 개선한 것으로, 정규화된 학습용 특징벡터들의 확률분포를 최적의 클러스터의 수를 갖는 GMM분포로 모델링한 다음, 이 분포를 이용하여 시험용화자의 워핑계수를 추정한다. 이 연구의 목적은 기존의 ML을 이용한 방법의 단점을 개선하는 동시에 벡터 양자화기를 이용한 선행연구와'soft decision'이라 불리는 확률 분포를 이용한 방법의 성능을 비교하는데 있다. TIMIT 코퍼스를 대상으로 한 음소 인식 실험에서 클러스터의 수를 적절한 크기로 설정한 GMM분포를 이용함으로써 벡터 양자화기를 이용한 방법에 비해 약간 나은 인식률을 얻을 수 있었다.
In this paper, we proposed the principal component analysis (PCA) fuzzy mixture model for speaker identification. A PCA fuzzy mixture model is derived from the combination of the PCA and the fuzzy version of mixture model with diagonal covariance matrices. In this method, the feature vectors are first transformed by each speaker's PCA transformation matrix to reduce the correlation among the elements. Then, the fuzzy mixture model for speaker is obtained from these transformed feature vectors with reduced dimensions. The orthogonal Gaussian Mixture Model (GMM) can be derived as a special case of PCA fuzzy mixture model. In our experiments, with having the number of mixtures equal, the proposed method requires less training time and less storage as well as shows better speaker identification rate compared to the conventional GMM. Also, the proposed one shows equal or better identification performance than the orthogonal GMM does.
This paper describes the use of pitch information for speaker identification. The recognition system is a GMM based one with 4 connected Korean digits speech database. The mean of the pitch period in voiced sections of speech are shown to be ,useful at discriminating between speakers. Utilizing this feature with Gaussian mixture model in the speaker identification system gave a marked improvement, maximum 6% improvement comparing to the baseline Gaussian mixture model.
Speaker verification system performance depends on the utterance of each speaker. To verify the speaker, important information has to be captured from the utterance. Nowadays under the constraints of limited data, speaker verification has become a challenging task. The testing and training data are in terms of few seconds in limited data. The feature vectors extracted from single frame size and rate (SFSR) analysis is not sufficient for training and testing speakers in speaker verification. This leads to poor speaker modeling during training and may not provide good decision during testing. The problem is to be resolved by increasing feature vectors of training and testing data to the same duration. For that we are using multiple frame size (MFS), multiple frame rate (MFR), and multiple frame size and rate (MFSR) analysis techniques for speaker verification under limited data condition. These analysis techniques relatively extract more feature vector during training and testing and develop improved modeling and testing for limited data. To demonstrate this we have used mel-frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC) as feature. Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) are used for modeling the speaker. The database used is NIST-2003. The experimental results indicate that, improved performance of MFS, MFR, and MFSR analysis radically better compared with SFSR analysis. The experimental results show that LPCC based MFSR analysis perform better compared to other analysis techniques and feature extraction techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.