• 제목/요약/키워드: GMM Speaker model

검색결과 60건 처리시간 0.023초

수정된 EM알고리즘을 이용한 GMM 화자식별 시스템의 성능향상 (Performance Enhancement of Speaker Identification System Based on GMM Using the Modified EM Algorithm)

  • 김성종;정익주
    • 음성과학
    • /
    • 제12권4호
    • /
    • pp.31-42
    • /
    • 2005
  • Recently, Gaussian Mixture Model (GMM), a special form of CHMM, has been applied to speaker identification and it has proved that performance of GMM is better than CHMM. Therefore, in this paper the speaker models based on GMM and a new GMM using the modified EM algorithm are introduced and evaluated for text-independent speaker identification. Various experiments were performed to evaluate identification performance of two algorithms. As a result of the experiments, the GMM speaker model attained 94.6% identification accuracy using 40 seconds of training data and 32 mixtures and 97.8% accuracy using 80 seconds of training data and 64 mixtures. On the other hand, the new GMM speaker model achieved 95.0% identification accuracy using 40 seconds of training data and 32 mixtures and 98.2% accuracy using 80 seconds of training data and 64 mixtures. It shows that the new GMM speaker identification performance is better than the GMM speaker identification performance.

  • PDF

음소별 GMM을 이용한 화자식별 (Speaker Identification using Phonetic GMM)

  • 권석봉;김회린
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.185-188
    • /
    • 2003
  • In this paper, we construct phonetic GMM for text-independent speaker identification system. The basic idea is to combine of the advantages of baseline GMM and HMM. GMM is more proper for text-independent speaker identification system. In text-dependent system, HMM do work better. Phonetic GMM represents more sophistgate text-dependent speaker model based on text-independent speaker model. In speaker identification system, phonetic GMM using HMM-based speaker-independent phoneme recognition results in better performance than baseline GMM. In addition to the method, N-best recognition algorithm used to decrease the computation complexity and to be applicable to new speakers.

  • PDF

Mahalanobis 거리측정 방법 기반의 GMM-Supervector SVM 커널을 이용한 화자인증 방법 (Speaker Verification Using SVM Kernel with GMM-Supervector Based on the Mahalanobis Distance)

  • 김형국;신동
    • 한국음향학회지
    • /
    • 제29권3호
    • /
    • pp.216-221
    • /
    • 2010
  • 본 논문에서는 Gaussian Mixture Model (GMM)-supervector의 Mahalanobis 거리측정 방법 기반의 Support Vector Machine (SVM) 커널을 이용한 새로운 화자인증 방법을 제안한다. 제안된 GMM-supervector SVM 커널방식은 GMM 방식과 SVM 방식을 결합한 방식으로서, GMM 파라미터에 의해 형성된 화자 및 비 화자 GMM-supervectors의 화자인증 임계값을 Mahalanobis 거리측정 방법기반의 SVM 커널에 적용함으로써 화자인증 정확도를 높인다. 제안한 방식의 성능 측정을 위해 20명의 화자를 대상으로 문장독립형 화자인증 실험을 수행하여 기존에 사용되고 있는 GMM, SVM, Kullback-Leibler (KL) divergence 거리측정 방법 기반의 GMM-supervector SVM 커널, Bhattacharyya 거리측정 방법기반의 GMM-supervector SVM 커널 방식을 통한 화자인증 결과들과 비교하였다.

휴대용 화자확인시스템을 위한 배경화자모델 설계에 관한 연구 (A Study on Background Speaker Model Design for Portable Speaker Verification Systems)

  • 최홍섭
    • 음성과학
    • /
    • 제10권2호
    • /
    • pp.35-43
    • /
    • 2003
  • General speaker verification systems improve their recognition performances by normalizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. So these systems rely heavily on the availability of much speaker independent databases for background speaker model design. This constraint, however, may be a burden in practical and portable devices such as palm-top computers or wireless handsets which place a premium on computations and memory. In this paper, new approach for the GMM-based background model design used in portable speaker verification system is presented when the enrollment data is available. This approach is to modify three parameters of GMM speaker model such as mixture weights, means and covariances along with reduced mixture order. According to the experiment on a 20 speaker population from YOHO database, we found that this method had a promise of effective use in a portable speaker verification system.

  • PDF

화자 식별을 위한 GMM의 혼합 성분의 개수 추정 (Estimation of Mixture Numbers of GMM for Speaker Identification)

  • 이윤정;이기용
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.237-245
    • /
    • 2004
  • In general, Gaussian mixture model(GMM) is used to estimate the speaker model for speaker identification. The parameter estimates of the GMM are obtained by using the expectation-maximization (EM) algorithm for the maximum likelihood(ML) estimation. However, if the number of mixtures isn't defined well in the GMM, those parameters are obtained inappropriately. The problem to find the number of components is significant to estimate the optimal parameter in mixture model. In this paper, to estimate the optimal number of mixtures, we propose the method that starts from the sufficient mixtures, after, the number is reduced by investigating the mutual information between mixtures for GMM. In result, we can estimate the optimal number of mixtures. The effectiveness of the proposed method is shown by the experiment using artificial data. Also, we performed the speaker identification applying the proposed method comparing with other approaches.

  • PDF

화자 인식을 위한 GMM기반의 이중 보상 구조 (Double Compensation Framework Based on GMM For Speaker Recognition)

  • 김유진;정재호
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.93-105
    • /
    • 2003
  • In this paper, we present a single framework based on GMM for speaker recognition. The proposed framework can simultaneously minimize environmental variations on mismatched conditions and adapt the bias free and speaker-dependent characteristics of claimant utterances to the background GMM to create a speaker model. We compare the closed-set speaker identification for conventional method and the proposed method both on TIMIT and NTIMIT. In the several sets of experiments we show the improved recognition rates on a simulated channel and a telephone channel condition by 7.2% and 27.4% respectively.

  • PDF

화자독립 음성인식을 위한 GMM 기반 화자 정규화 (Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition)

  • 신옥근
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.437-442
    • /
    • 2005
  • 화자독립 음성인식기의 화자 정규화를 위해 GMM(Gaussian mixture model)분포를 이용하는 방법에 대해 실험한다. 이 방법은 벡터 양자화기를 이용한 선행 연구를 개선한 것으로, 정규화된 학습용 특징벡터들의 확률분포를 최적의 클러스터의 수를 갖는 GMM분포로 모델링한 다음, 이 분포를 이용하여 시험용화자의 워핑계수를 추정한다. 이 연구의 목적은 기존의 ML을 이용한 방법의 단점을 개선하는 동시에 벡터 양자화기를 이용한 선행연구와'soft decision'이라 불리는 확률 분포를 이용한 방법의 성능을 비교하는데 있다. TIMIT 코퍼스를 대상으로 한 음소 인식 실험에서 클러스터의 수를 적절한 크기로 설정한 GMM분포를 이용함으로써 벡터 양자화기를 이용한 방법에 비해 약간 나은 인식률을 얻을 수 있었다.

PCA 퍼지 혼합 모델을 이용한 화자 식별 (Speaker Identification Using PCA Fuzzy Mixture Model)

  • 이기용
    • 음성과학
    • /
    • 제10권4호
    • /
    • pp.149-157
    • /
    • 2003
  • In this paper, we proposed the principal component analysis (PCA) fuzzy mixture model for speaker identification. A PCA fuzzy mixture model is derived from the combination of the PCA and the fuzzy version of mixture model with diagonal covariance matrices. In this method, the feature vectors are first transformed by each speaker's PCA transformation matrix to reduce the correlation among the elements. Then, the fuzzy mixture model for speaker is obtained from these transformed feature vectors with reduced dimensions. The orthogonal Gaussian Mixture Model (GMM) can be derived as a special case of PCA fuzzy mixture model. In our experiments, with having the number of mixtures equal, the proposed method requires less training time and less storage as well as shows better speaker identification rate compared to the conventional GMM. Also, the proposed one shows equal or better identification performance than the orthogonal GMM does.

  • PDF

피치 정보를 이용한 GMM 기반의 화자 식별 (GMM based Speaker Identification using Pitch Information)

  • 박태선;한민수
    • 대한음성학회지:말소리
    • /
    • 제47호
    • /
    • pp.121-129
    • /
    • 2003
  • This paper describes the use of pitch information for speaker identification. The recognition system is a GMM based one with 4 connected Korean digits speech database. The mean of the pitch period in voiced sections of speech are shown to be ,useful at discriminating between speakers. Utilizing this feature with Gaussian mixture model in the speaker identification system gave a marked improvement, maximum 6% improvement comparing to the baseline Gaussian mixture model.

  • PDF

Speaker Verification with the Constraint of Limited Data

  • Kumari, Thyamagondlu Renukamurthy Jayanthi;Jayanna, Haradagere Siddaramaiah
    • Journal of Information Processing Systems
    • /
    • 제14권4호
    • /
    • pp.807-823
    • /
    • 2018
  • Speaker verification system performance depends on the utterance of each speaker. To verify the speaker, important information has to be captured from the utterance. Nowadays under the constraints of limited data, speaker verification has become a challenging task. The testing and training data are in terms of few seconds in limited data. The feature vectors extracted from single frame size and rate (SFSR) analysis is not sufficient for training and testing speakers in speaker verification. This leads to poor speaker modeling during training and may not provide good decision during testing. The problem is to be resolved by increasing feature vectors of training and testing data to the same duration. For that we are using multiple frame size (MFS), multiple frame rate (MFR), and multiple frame size and rate (MFSR) analysis techniques for speaker verification under limited data condition. These analysis techniques relatively extract more feature vector during training and testing and develop improved modeling and testing for limited data. To demonstrate this we have used mel-frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC) as feature. Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) are used for modeling the speaker. The database used is NIST-2003. The experimental results indicate that, improved performance of MFS, MFR, and MFSR analysis radically better compared with SFSR analysis. The experimental results show that LPCC based MFSR analysis perform better compared to other analysis techniques and feature extraction techniques.