• 제목/요약/키워드: GMM Method

검색결과 301건 처리시간 0.023초

관심영역 추출과 통합에 의한 적외선 영상 분할 (Infrared Image Segmentation by Extracting and Merging Region of Interest)

  • 염석원
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-497
    • /
    • 2016
  • 적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.

Mean Shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출 (Skin Region Detection Using Histogram Approximation Based Mean Shift Algorithm)

  • 변기원;주재흠;남기곤
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.21-29
    • /
    • 2011
  • 사전에 정의된 피부 색상 정보를 이용한 기존 피부 검출 방법들은 배경과 피부 영역을 분할하는 단계에서 사용되는 임계값을 실험을 통하여 주관적 관점에서 결정하였다. 또한 기존 방법들은 배경 환경과 조명 환경에 따라 각각 다른 임계값을 설정하였다. 이러한 기존 방법들은 반복 실험을 통하여 추정된 임계값에 따라 성능이 좌우되는 단점이 제시되었다. 제시된 기존 방법들의 단점을 극복하기 위하여 본 논문은 mean shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출 방법을 제안한다. 제안하는 방법은 CbCr 컬러공간에서의 표준 피부색상과 유사도를 비교하여 생성된 입력 영상의 피부맵(skin-map)의 히스토그램에서 mean shift 방법을 이용하여 각각 밝기 영역별로 수렴하는 극대점을 능동적으로 찾아서 배경 영역과 피부영역으로 분할한다. 히스토그램은 픽셀의 명도값에 따라 누적되는 불연속 함수의 형태를 가지므로 베이지 곡선(Bezier curve) 기법을 이용하여 연속 가우시안 함수로 근사화된다. 따라서 제안하는 방법은 기존 방법에서처럼 수동적으로 임계값을 설정하는 방법을 사용하지 않고 mean shift 기법을 이용하여 능동적으로 영역 분할점인 극대점을 찾아서 피부 영역을 검출한다. 제안된 방법은 실험을 통하여 강인하고 효율적으로 피부 영역을 검출하였다.

GrabCut의 자동 객체 추출을 위한 저주파 영역 탐지 기반의 윈도우 생성 기법 (Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of GrabCut)

  • 유태훈;이강성;이상훈
    • 디지털융복합연구
    • /
    • 제10권8호
    • /
    • pp.211-217
    • /
    • 2012
  • 기존의 GrabCut 알고리즘은 자동 객체 추출이 아닌 사용자가 객체 영역에 사각형 윈도우를 설정해야하는 알고리즘이다. 본 논문에서는 자동 시스템으로 변환하기 위해 인간의 시각 시스템을 기반으로 영상에서 가장 눈에 띄는 영역을 탐지하는 방법을 연구하였다. 주의 시각 영역인 Saliency Map을 생성하기 위해서 인간이 색채를 감지하는 '적/녹' '황/청'의 대립색설을 기반으로 하는 Lab 색공간을 이용하여 생성한다. 생성된 Saliency Map을 주파수 공간으로 변환하여 저주파 영역에 국부적인 경계를 나타내고 경계를 탐지해내어 Saliency Point를 생성한다. 이렇게 생성된 Saliency Point의 좌표 값을 이용하여 윈도우를 자동으로 생성한 후 GrabCut 알고리즘을 기반으로 객체를 추출하였다. 다양한 영상에 제안한 알고리즘을 적용한 결과 객체 영역에 자동으로 윈도우가 생성되었고 객체가 추출되었다.

패널구조방정식을 활용한 IT기업의 R&D투자효과 연구: 특허 매개효과 중심으로 (R&D Investment Effect through Patent on IT firms using Panel Structural Equations)

  • 이종호;김태환;정우진
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.137-150
    • /
    • 2020
  • This study analyzes not only the direct impact of R&D investment on corporate growth for 578 private firms in 2007-2016, but also whether corporate innovation activities play a role as a mediating parameter between R&D investment and corporate growth. For this purpose, we classify companies into IT and non-IT companies and measure the mediating effect by dividing innovation activities into the number of registered patents, applied patents, and sum of them. In addition, this study is based on both the systemGMM which is considered to be effective in solving the endogenous problems caused by the cross-sectional analysis in previous studies and ML-SEM which is a new method recently, and then compares two results. According to the empirical results, innovation activities has a role as partly mediating parameter on sales growth in non-IT companies. On the other hands, in IT companies, the increase in R&D investment leads to a decrease in sales of the company, and the increase in innovation activities increases the sales of the company. However, it was confirmed that IT companies also had positive effects by adjusting the lag of the R&D. In other words, this suggests that securing patents is more important than R&D investment for direct sales growth of IT companies. It is also evidence that immediate introduction of technology is necessary to respond to the speed of technological change since the cycle time of technologies of the IT field is relatively shorter compared to that of other fields.

e-비즈니스의 유통기업 성장성 및 수익성 기여 효과분석 (The Effect of E-Business on Firm's Growth and Profitability in the Distribution Industry)

  • 백철우
    • 유통과학연구
    • /
    • 제15권1호
    • /
    • pp.123-130
    • /
    • 2017
  • Purpose - This research aims to examine the effect of e-business adoption on firm's growth and profitability in the distribution industry. The value added from the distribution industry acts as the cost of other industries. As the distribution industry develops, its stage becomes shorter and the distribution margin becomes smaller. Therefore, e-business is expected to have a different effect on the distribution industry than other industries. Research design, data and methodology - The previous research generally used e-business adoption as an independent variable and firm's performance as a dependent variable. This study elaborated the model using a dynamic panel model that includes the performance variable of the previous year as an independent variable. By employing system GMM (Generalized Method of Moments), the endogeneity problem in the dynamic panel model can be solved. For the analysis, I extracted the distribution companies as the raw data in the National Statistical Office's Business Activity Survey over the period 2006 to 2012. Results - The growth rate of firms adopting e-business was 0.299%p higher than that of the non-adopter. However, only ERP (Enterprise Resource Planning), KMS (Knowledge Management System) and SCM (Supply Chain Management) contributed positively to the growth rate. In the case of profitability, it was 0.04%p higher than the distribution companies that did not adopt e-business. ERP and LMS (Learning Management System) improve profitability, while SCM reduces profitability. Consequently, while ERP improves both growth and profitability, SCM improves growth but reduces profitability. In addition, KMS improves firm's growth only, and LMS does only profitability, showing that each e-business has a differentiated effect. Conclusions - Since the distribution industry has different characteristics from manufacturing and other service industries, the introduction of e-business may not guarantee the growth and profitability of distribution companies. Careful introduction considering the characteristics of the distribution industry is required. In particular, it is necessary to select an e-business meeting the characteristics and needs of a distribution company, and thereafter, it is required for the company's own efforts to internalize it within the system.

음소기반의 순환 신경망 음성 검출기를 이용한 음성 향상 (Speech Enhancement using RNN Phoneme based VAD)

  • 이강;강상익;권장우;이상민
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.85-89
    • /
    • 2017
  • 본 논문에서는 향상된 연산 능력을 가진 하드웨어와 알고리즘의 혼합을 통하여 음성 향상을 위한 정확한 음성 검출기 구현을 목적으로 하였다. 음성은 음소의 나열로 구성되어있으며 음성 모델을 세우는데 적합한 방법은 이전의 정보를 이용하는 순환 신경망 (recurrent neural network, RNN)을 사용하는 것이다. 실제 존재하는 모든 잡음에 대하여 학습한 모델을 제시하는 것은 사실상 불가능 하므로 이를 극복하고자 음소기반 학습을 진행하였다. 학습의 결과로 세워진 모델을 기반으로 새로운 음성 신호에서 음성을 검출하고 그 결과를 이용하여 음성 향상을 진행하였다. 순환 신경망과 음소기반 학습은 프레임 별 높은 상관성을 가진 음성 신호에서 좋은 성능을 얻을 수 있었으며 음성 검출기의 성능을 검증하기 위하여 라벨 데이터와 음성 검출결과를 비교하고 다양한 잡음 환경에서 객관적 음질 평가를 진행하여 기존의 음성 향상 알고리즘과 비교하였다.

HMM-UBM의 주 상태 정보를 이용한 음성 기반 문맥 독립 화자 검증 (Text Independent Speaker Verficiation Using Dominant State Information of HMM-UBM)

  • 손수원;노진상;김성수;이재원;고한석
    • 한국음향학회지
    • /
    • 제34권2호
    • /
    • pp.171-176
    • /
    • 2015
  • 본 논문에서는 Hidden Markov Model(HMM) - Universal Background Model(UBM)의 주 상태 정보 기반의 i-vector 추출 기술을 제안한다. Ergodic HMM이 UBM을 추정하는데 쓰였으며, 이를 통해 동일 화자 음성에도 다양하게 존재하는 특성을 HMM states로 분류할 수 있다. 제안한 방법을 이용하면 HMM의 state 개수에 따라 i-vector 들이 추출되는데, 주 상태 정보 방법을 통해 이들 중 하나를 선택한다. 제안한 방법을 검증하기 위해 National Institute of Standards and Technology(NIST) Speaker Recognition Evaluation(SRE) database를 이용하여 실험을 하였으며, Equal Error Rate(EER) 성능 수치에서 12 %의 성능 향상을 확인할 수 있었다.

The Effect of R&D on High-Tech Product Export Competitiveness: Empirical Evidence from Panel Data of East Asian Economies

  • Alemu, Aye Mengistu
    • STI Policy Review
    • /
    • 제3권1호
    • /
    • pp.46-62
    • /
    • 2012
  • This study investigates the effects of the two most important indicators of a nation's state of scientific infrastructure: R&D investment and the number of R&D researchers engaged in high-tech product export competitiveness for a panel of 11 countries/economies from East Asia from 1994 to 2010. A GMM panel estimation method was employed to account for the dynamic effect of trade and to control for un-observed country specific effects that may arise due to an inter-country differences and intra-country dynamics. Accordingly, the empirical results reveal that (once controlled for the influence of per capita income) physical capital and infrastructure, a 1% increase in a country's expenditure on the ratio of R&D to GDP may increase high-tech product export performance by approximately $397 million per year. Other factors constant, a 1% increase in the number of R&D researchers is expected to increase the ability to export high-tech products by approximately $67 million. The East Asian development experience demonstrates how latecomers can follow systematic industrialization and join the handful of economies that have come a long way toward closing the knowledge gap with the global technological leaders. However, this does not mean that the policy approaches and overall commitments pursued by each East Asian economy in relation to R&D investment and acquisition of an adequate pool of researchers, and their ultimate achievements in high-tech product export competitiveness were uniform. As a result, there is still a significant variation among countries/economies in terms of performance. This study recommended a number of potential tools and policy instruments that may assist policy makers to foster R&D as an engine to enhance the high-tech product export competitiveness.

Sources of Trade Balance Dynamics in Korea

  • Kim, Jiwoon;Yu, Jongmin
    • Journal of Korea Trade
    • /
    • 제26권2호
    • /
    • pp.21-44
    • /
    • 2022
  • Purpose - This study quantifies sources of trade balance dynamics over the business cycle in Korea. Specifically, we quantify the relative importance of domestic and foreign factors on trade balance dynamics using a small open economy real business cycle (SOE-RBC) model and provide policy implications for stabilization policies. Aggregate productivity and interest rate spreads are considered domestic factors affecting the trade balance. A world interest rate (the U.S. interest rate) is considered a foreign factor. Design/methodology - Following Neumeyer and Perri (2005), we build the SOE-RBC model with three types of shocks: aggregate productivity, interest rate spread, and world interest shocks. The model is estimated by the generalized method of moments (GMM) using relevant business cycle statistics. The estimated model is used for quantifying the relative importance of domestic and foreign factors on trade balance dynamics in Korea. Findings - Our main findings can be summarized as follows: 85.64% of the trade balance fluctuations in Korea are explained by domestic factors, the remaining 14.35% by foreign factors. Particularly, trade balance dynamics are mostly accounted for by the change in aggregate productivity shocks (85.58%). World interest rate shocks considerably explain trade balance (14.35%), whereas the role of interest rate spread shocks that represent domestic risks is limited (0.08%). Although aggregate productivity is key in explaining trade balance dynamics in Korea, interest rates still have an essential role. This is because aggregate productivity changes induce interest rate spread variations and, thus, the trade balance significantly. The results suggest that government policies mitigating fluctuations in aggregate productivity would be effective for stabilization policies in Korea by reducing the trade balance volatility. Originality/value - Existing studies on the emerging market business cycle examine mostly Latin American countries, and the main object of the studies is the volatility of consumption rather than trade balance dynamics. Conversely, our study examines Korea rather than Latin American countries. Additionally, we examine sources of trade balance dynamics, which are relatively more important in Korea, rather than those of the volatility of consumption. Hence, we estimate the model to explicitly match moments related to trade balance in the data.

다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법 (Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection)

  • 김지현;이세영;김예림;안서영;박새롬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF