• 제목/요약/키워드: GMM(Gaussian Mixture Models)

검색결과 41건 처리시간 0.026초

생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술 (Driver Verification System Using Biometrical GMM Supervector Kernel)

  • 김형국
    • 한국ITS학회 논문지
    • /
    • 제9권3호
    • /
    • pp.67-72
    • /
    • 2010
  • 본 논문에서는 음성과 얼굴 정보를 분석하여 자동차환경에서 운전자를 검증하는 기술을 소개한다. 음성정보를 이용한 화자검증을 위해서는 잘 알려진 Mel-scale Frequency Cepstral Coefficients(MFCCs)를 음성 특징으로 사용하였으며, 동영상을 이용한 얼굴검증에 대해서는 AdaBoost를 이용하여 검출된 얼굴 영역에 대해 주성분 분석을 수행하여 데이터의 크기가 현저히 줄어든 특징벡터를 추출하였다. 기존의 화자검증 방식에 비해 본 논문에서는 추출된 음성 및 얼굴 특징들을 Gaussian Mixture Models(GMM)-Supervector기반의 Support Vector Machine(SVM)커넬 방식에 적용하여 운전자의 음성과 얼굴을 효과적으로 검증하는 방식을 제안하였다. 실험결과 제안한 방법은 단순한 GMM 방식이나 SVM 방식보다 운전자 검증성능을 향상시킴을 알 수 있었다.

가우시안 혼합모델을 이용한 솔라셀 색상분류 (Solar Cell Classification using Gaussian Mixture Models)

  • 고진석;임재열
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.1-5
    • /
    • 2011
  • In recent years, worldwide production of solar wafers increased rapidly. Therefore, the solar wafer technology in the developed countries already has become an industry, and related industries such as solar wafer manufacturing equipment have developed rapidly. In this paper we propose the color classification method of the polycrystalline solar wafer that needed in manufacturing equipment. The solar wafer produced in the manufacturing process does not have a uniform color. Therefore, the solar wafer panels made with insensitive color uniformity will fall off the aesthetics. Gaussian mixture models (GMM) are among the most statistically mature methods for clustering and we use the Gaussian mixture models for the classification of the polycrystalline solar wafers. In addition, we compare the performance of the color feature vector from various color space for color classification. Experimental results show that the feature vector from YCbCr color space has the most efficient performance and the correct classification rate is 97.4%.

Detection of Pathological Voice Using Linear Discriminant Analysis

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.77-88
    • /
    • 2007
  • Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.

  • PDF

A Speaker Pruning Method for Real-Time Speaker Identification System

  • 김민정;석수영;정종혁
    • 대한임베디드공학회논문지
    • /
    • 제10권2호
    • /
    • pp.65-71
    • /
    • 2015
  • It has been known that GMM (Gaussian Mixture Model) based speaker identification systems using ML (Maximum Likelihood) and WMR (Weighting Model Rank) demonstrate very high performances. However, such systems are not so effective under practical environments, in terms of real time processing, because of their high calculation costs. In this paper, we propose a new speaker-pruning algorithm that effectively reduces the calculation cost. In this algorithm, we select 20% of speaker models having higher likelihood with a part of input speech and apply MWMR (Modified Weighted Model Rank) to these selected speaker models to find out identified speaker. To verify the effectiveness of the proposed algorithm, we performed speaker identification experiments using TIMIT database. The proposed method shows more than 60% improvement of reduced processing time than the conventional GMM based system with no pruning, while maintaining the recognition accuracy.

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

수정된 EM알고리즘을 이용한 GMM 화자식별 시스템의 성능향상 (Performance Enhancement of Speaker Identification System Based on GMM Using the Modified EM Algorithm)

  • 김성종;정익주
    • 음성과학
    • /
    • 제12권4호
    • /
    • pp.31-42
    • /
    • 2005
  • Recently, Gaussian Mixture Model (GMM), a special form of CHMM, has been applied to speaker identification and it has proved that performance of GMM is better than CHMM. Therefore, in this paper the speaker models based on GMM and a new GMM using the modified EM algorithm are introduced and evaluated for text-independent speaker identification. Various experiments were performed to evaluate identification performance of two algorithms. As a result of the experiments, the GMM speaker model attained 94.6% identification accuracy using 40 seconds of training data and 32 mixtures and 97.8% accuracy using 80 seconds of training data and 64 mixtures. On the other hand, the new GMM speaker model achieved 95.0% identification accuracy using 40 seconds of training data and 32 mixtures and 98.2% accuracy using 80 seconds of training data and 64 mixtures. It shows that the new GMM speaker identification performance is better than the GMM speaker identification performance.

  • PDF

비디오 셧의 감정 관련 특징에 대한 통계적 모델링 (Statistical Model for Emotional Video Shot Characterization)

  • 박현재;강행봉
    • 한국통신학회논문지
    • /
    • 제28권12C호
    • /
    • pp.1200-1208
    • /
    • 2003
  • 비디오 데이터에 존재하는 감정을 처리하는 것은 지능적인 인간과 컴퓨터와의 상호작용을 위해서 매우 중요한 일이다. 이러한 감정을 추출하기 위해서는 비디오로부터 감정에 관련된 특징들을 검출하기 위한 컴퓨팅 모델을 구축하는 것이 바람직하다. 본 논문에서는 비디오 셧에 존재하는 저급 특징들의 확률적인 분포를 이용하여 감정 이벤트 발생에 관련된 통계학적인 모델을 제안한다. 즉, 비디오 셧의 기본적인 특징을 추출하고 그 특징을 통계적으로 모델화 하여 감정을 유발하는 셧을 찾아낸다. 비디오 셧의 특징으로는 칼라, 카메라 모션 및 셧 길이의 변화를 이용한다. 이러한 특징들을 EM(Expectation Maximization) 알고리즘을 이용하여 GMM(Gaussian Mixture Model) 으로 모델링하고, 감정과 시간과의 관계를 MLE(Maximum Likelihood Estimation)를 이용하여 시간에 따른 확률분포 모델로 구성한다. 이런 두 개의 통계적인 모델들을 융합하여 베이시안 분류법을 적용하여 비디오 데이터로부터 감정에 관련된 셧을 찾아낸다.

An Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model

  • Yoon, Seok-Hwan;Min, Joonyoung
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.621-632
    • /
    • 2013
  • The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.

HMM-GMM 방식을 이용한 복부 근전도 분석에 관한 연구 (A study on analysis of abdominal EMG using Hmm-Gmm algorithm)

  • 권장우;김정호;김현성;윤동업;최흥호
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2007년도 춘계학술대회 및 국제감성 심포지엄
    • /
    • pp.121-124
    • /
    • 2007
  • 최근 각종 질환의 원인이 되고 있는 비만은 심각한 사회문제로 대두되고 있으며, 이를 해결하기 위해 비만관리를 위한 측정 시스템의 필요성이 증가하고 있다. 본 논문은 비만관리를 위해 복부의 근전도 신호를 분석해서 언제 어디서든 본인의 건강상태를 체크하여 적절한 의료 서비스를 받을 수 있는 측정 시스템에 관한 연구이다. 복부 근전도 신호 분석을 위해서 에너지 검출, 신호 특징 추출, 상태 분류 및 인식 등을 위한 알고리즘을 제안한다. 이 신호 분석 알고리즘을 측정 시스템에 적용하여 복부의 비만도 및 복부의 근력을 평가하여 건강상태에 대한 적절한 평가를 제공하는 시스템을 제안한다.

  • PDF

GMM-Based Maghreb Dialect Identification System

  • Nour-Eddine, Lachachi;Abdelkader, Adla
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.22-38
    • /
    • 2015
  • While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.