• 제목/요약/키워드: GLONASS

검색결과 148건 처리시간 0.025초

위성항법 측위에서 GLONASS가 미치는 영향에 대한 연구 (A Study on Efficiency of the Combination of GPS and GLONASS)

  • 조규전;공종덕;최일훈
    • 한국측량학회지
    • /
    • 제20권4호
    • /
    • pp.359-366
    • /
    • 2002
  • GPS만에 의한 위성측위는 city cannon 지형적 조건과 장애물에 의한 관측이 불가능한 경우가 발생한다. 한편 GLONASS 위성은 현재 가동 위성 수가 부족하여 자체적으로 정확한 측위능력이 없으나 GPS와 통합할 경우 GPS의 단점을 보완할 수 있다. 본 연구에서는 위성수신기를 이용하여 4가지(수신 가능한 위성 수, 원시 데이터의 정밀성, 기지점에 대한 편차, RTK측량의 편차) 분석 방법을 통해 GPS 단일측위와, GPS와 GLONASS의 통합측위에 대하여 분석하였다. 위성측위 실험의 결과 위성측위에 반드시 필요한 최소위성 4개만이 수신된 시간은 1개월에 단일측위 11시간이고 통합측위 4시간이 되었다. 위성의 원시 데이터의 정밀성에서는 단일측위보다 통합 측위의 표준편차가 0.08~l.8m 정도 좋은 값의 분포가 나타났다. GPS에 의한 좌표성과에서 3~11mm의 보다 높은 정확도를 나타냈다. RTK에서는 편차차가 N좌표에서는 GPS 단일측위가 E좌표에서는 GPS와 GLONASS 통합측위가 나은 값의 분포를 나타냈다. 하지만 모든 조건에서 통합측위가 우세한 것은 아니며, 그 역할에는 한계가 있다.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권4호
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

위성항법시스템을 이용한 대상지별 단기선 정확도 분석 (The Accuracy Analysis of Each Test Area Short Baseline Using Satellite Navigation System)

  • 박운용;차성렬;홍순헌
    • 대한공간정보학회지
    • /
    • 제10권1호
    • /
    • pp.51-57
    • /
    • 2002
  • GPS(Global Positioning System)가 토목공사, 기준점 측량, 구조물 변형등 측지 및 측량분야에 활용성이 우수하다는 것은 여러 연구 결과에서 입증되었지만, 고층 빌딩이 산재한 도심지나 공장지역등 GPS 위성신호의 수신이 최소 4개 이하로 떨어지는 장소에서서의 GPS 정적 위치결정 정확도는 현저히 떨어진다는 것을 알 수 있다. 따라서 GPS 위성과 GLONASS(GLObal Navigation Satellite System)를 결합하여 위성의 가시성을 높여 보다 많은 위치 정보를 획득하여 향상된 정적 위치결정 정확도를 얻으려 한다. 그 결과 GPS/GLONASS 결합시스템으로 도심지에서 다중경로, 신호의 고도각, 가시위성 부족에 의한 위치 결정정확도를 저하하는 것을 향상시켰다.

  • PDF

Evaluation of Navigation System Performance of GPS/GLONASS/Galileo/BeiDou/QZSS System using High Performance GNSS Receiver

  • Park, Yong-Hui;Jeong, Jin-Ho;Park, Jin-Mo;Park, Sung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.333-339
    • /
    • 2022
  • The satellite navigation system was developed for the purpose of calculating the location of local users, starting with the Global Positioning System (GPS) in the 1980s. Advanced countries in the space industry are operating Global Navigation Satellite System (GNSS) that covers the entire earth, such as GPS, GLONASS, Galileo, and BeiDou, by establishing satellite navigation systems for each country. Regional Navigation Satellite Systems (RNSS) such as QZSS and NavIC are also in operation. In the early 2010s, only GPS and GLONASS could calculate location using a single system for location determination. After 2016, the EU and China also completed the establishment of GNSS such as Galileo and BeiDou. As a result, satellite navigation users can benefit from improved availability of GNSS. In addition, before Galileo and BeiDou's Full Operational Capability (FOC) declaration, they used combined navigation algorithms to calculate the user's location by adding another satellite navigation system to the GPS satellites. Recently, it may be possible to calculate a user's location for each navigation system using the resources of a single system. In this paper, we evaluated the performance of single system navigation and combined navigation solutions of GPS, GLONASS, Galileo, BeiDou and QZSS individual navigation systems using high-performance GNSS receivers.

컨테이너 수송용 위치 추적 안테나 설계 및 제작 (Design and Fabrication of Location Tracing Antenna for Container Transportation)

  • 강상원
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.119-124
    • /
    • 2014
  • 본 논문에서는 한 보드에서 GPS/GLONASS 대역을 이용하여 컨테이너의 위치정보를 확인 할 수 있고, 위치 정보를 실시간으로 이동통신망으로 전송 할 수 있는 GSM/WCDMA 대역의 안테나를 설계하였다. GPS(1.575.42MHz)와 GLONASS(1.602MHz) 듀얼 대역을 지원하는 마이크로스트립 패치 안테나를 최적화하였고, 안테나의 크기는 $25{\times}25{\times}5[mm]$이다. GSM(824-960MHz)와 WCDMA(1970-2170MHz) 이중대역을 지원하는 칩 모노폴 안테나를 최적화 하였고, 안테나의 크기는 $27{\times}8{\times}3.2[mm]$이다. 위성 수신레벨을 증폭하기 위해 2단 저잡음 증폭기(LNA)를 설계하였고. LNA 이득은 27[dB]이다. 안테나의 측정지그의 크기는 $100{\times}30{\times}1[mm]$이다.

저가형 수신기를 이용한 GPS/GLONASS/BDS 통합 측위 정확도 분석 (Analysis of Integrated GPS/GLONASS/BDS Positioning Accuracy using Low Cost Receiver)

  • 태현우;박관동;김미소
    • 대한공간정보학회지
    • /
    • 제23권4호
    • /
    • pp.49-55
    • /
    • 2015
  • 본 연구에서는 GPS/GLONASS/BDS 통합 측위를 수행하기 위해 고려해야 할 사항을 소개하였으며, 저가형 수신기를 통해 개활지 환경과 난수신 환경에서의 통합 측위의 정확도를 분석하였다. 개활지 환경에서는 통합 측위 시 수평 RMSE가 1.2m로 단일 시스템만을 이용한 측위에 비해 수평 정확도가 17-55%만큼 향상되었으며 편향이 개선되어 높은 측위 성능을 나타내는 것을 확인하였다. 난수신 환경에서의 가시 위성 개수를 파악한 결과 단일 시스템을 이용하여 측위를 할 때에는 가시 위성의 개수가 4개 미만이 되어 측위가 되지 않는 경우가 발생했으나, 통합 측위를 할 때에는 가시 위성 개수가 항상 4개 이상이 되어 측위가 되지 않는 경우가 발생하지 않았다. 난수신 환경에서 통합 측위의 수평 RMSE는 6.4m로 단일 시스템만을 이용하여 측위를 수행했을 때보다 8-47%만큼 수평 정확도가 향상되는 것을 확인하였다.

위성항법시스템 운영 현황 및 개발 계획 (Current Status and Development Plan of Global Navigation Satellite System)

  • 하지현;천세범
    • 항공우주산업기술동향
    • /
    • 제8권2호
    • /
    • pp.46-53
    • /
    • 2010
  • 이 논문에서는 위성항법시스템의 운영 현황과 개발 계획에 대하여 기술하였다. 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System), 유럽의 Galileo, 중국의 Beidou/Compsss, 그리고 일본의 QZSS(Quasi-Zenith Satellite System) 에 대하여 시스템의 구성과 운영 위성 상태에 대하여 기술하였으며, 각 시스템의 개발 계획과 현대화에 대하여 기술하였다.

  • PDF

The Coastline Extraction Using RTK GPS/GLONASS

  • Jang, Ho-Sik;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • 제2권2호
    • /
    • pp.107-113
    • /
    • 2002
  • On this study, it was applied that the method of Coastline extracting by aerial photogrammetry so as to extract the coastline using the method of RTK GPS/GLONASS. The observed area is Gwanganri beach that is located in Pusan and it was observed according to high wave of scar when the approximate highest high water and it was surveyed according to that the boundary line connecting to sea water surface at random time-zone. Observation analysis was used digital map of 1:1,000 and compared coastline that was converted tide with coastline of high tide. So this conclusions was agreed with converted coastline and high tide coastline.

  • PDF

GPS/GLONASS 통합보정시스템의 측위정확도 성능분석

  • 서기열;박상현;장원석
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2011년도 춘계학술대회
    • /
    • pp.29-30
    • /
    • 2011
  • GNSS 시스템의 다원화에 따른 DGPS RSIM 기능도 DGNSS 체제로 기능적, 시스템적 고도화가 필요한 시점이 도래하고 있다. 이와 관련하여 차세대 DGNSS RSIM 아키텍처를 미국 해양경비대(USCG) NAVCEN에서 제안하였는데, 이 차세대 DGPS RSIM 아키텍처의 기본 요구조건은 PC 플랫폼 기반의 신규 신호 및 기술에 대한 충분한 유연성을 확보할 수 있고, 기존 사용자 수신기와 기존 기준국 시스템과의 충분한 호환이 가능해야 한다는 것이다. 그러나 위의 제시된 아키텍처는 DGPS RSIM 시스템의 소프트웨어 응용에 초점이 맞추어져 있어서 GNSS 다원화에 따른 DGNSS 기준국 기능 고도화에 한계가 있다. 그러므로 본 논문에서는 소프트웨어 DGNSS RSIM 개발을 위한 후속연구로서, 현재 운영 중인 GPS/GLONASS를 중심으로 보정정보 생성 및 그 측위정확도 성능분석에 중점을 두고자 한다. 기 설계된 DGNSS 소프트웨어 RSIM 아키텍처에 대해 설명하고, 설계된 아키텍처와 통합보정정보 생성 및 처리 기법이 적용된 GPS/GLONASS 통합보정시스템을 구현하여, 향후 소프트웨어 DGNSS RSIM을 위한 측위정확도 측면에서의 성능을 분석한다.

  • PDF

GNSS: Resuscitated GLONASS, GPS Modernization, Galileo, and Beyond

  • Liu, Tony
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.27-31
    • /
    • 2006
  • With the fast developing pace, the Galileo system is entering the navigation stage with high profile. At the same time, U.S. is accelerating his GPS modernization schedule, and Russian also begins to resuscitate their GLONASS. Moreover, Chinese Beidou system has also joined the satellite navigation family with low profile already. And of course Japanese QZSS even moves forward. Along with the bitter competition in technology, finance, market and even military affairs, all these systems will firmly benefit each other and massively extend the role of civil satellite navigation industry in the future. The Global Navigation Satellite Systems (GNSS) would be almost certain to include above major satellite navigation systems. Thus how to utilize the navigation satellite resource for world peace and promote the progress of mankind should be the key issue of this century.

  • PDF