• 제목/요약/키워드: GLOC (Gravity-induced Loss of Consciousness)

검색결과 3건 처리시간 0.017초

중력 가속도로 인한 의식상실 감지 및 자동 회복 시스템 개발 (Development of Gravity-induced Loss of Consciousness(GLOC) Monitoring System and Automatic Recovery System)

  • 김종섭;황병문;강임주;장순용;김광윤;박명환
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.704-713
    • /
    • 2011
  • For many years, many pilots lost their lives and aircrafts due to GLOC(Gravity-induced Loss Of Consciousness). Due to the emergence of high-gravity maneuvering aircraft such as the F-16, F-15 and T-50, the automatic GLOC detection and recovery systems are necessary to increase the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering. This paper addresses the design of GLOC detection, warning and recovery algorithm based on a model of supersonic jet trainer. The system is solely controlled by the pilot's control input (i.e., control stick force) and aircraft status such as attitude, airspeed, altitude and so forth. And, moreover, it does not depend upon any pilot physiological condition. The test evaluation results show that the developed system supports the recovery of an aircraft from the unusual aircraft attitude and improves the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering.

Anti-G 슈트 공압 제어를 위한 제어법칙 개발 (Development of a Control Law to Pneumatic Control for an Anti-G Suit)

  • 김종섭;황병문
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.548-556
    • /
    • 2015
  • F-22, F-16 및 F-15와 같은 고성능 전투기는 전투성능의 극대화를 위해 고기동성(highly maneuverable)을 보유하고 있다. 이로 인해 고기동 시에 조종사는 고중력가속도(high gravity acceleration)에 노출되고 피로도(fatigue)의 증가로 임무효율의 저하가 발생하며, 심할 경우에는 의식상실(Gravity-induced Loss Of Consciousness, GLOC)에 직면할 수 있다. 선진 항공업체에서는 조종사가 고중력가속도에 견딜 수 있는 내성을 향상시켜 의식상실에 진입하는 것을 방지하는 다양한 기술을 항공기에 적용하고 있다. 특히, 가속도방호복(Anti-G Suit)은 GLOC으로 인한 의식 상실을 방지할 수 있을 뿐만 아니라, 전투 기동 시에 조종사의 피로를 감소시킴으로써 임무성공률을 향상시킬 수 있다. 본 논문에서는 초음속 고등훈련기 모델을 기반으로 하여 고기동 시에 중력가속도의 증가에 따라 AGS에 최적의 공기압을 제공할 수 있는 제어알고리즘을 개발하고 검증하였다. 이러한 결과는 추후에 체계개발이 진행될 한국형전투기개발사업(Korean Fighter eXperimental, KF-X)에서 핵심기술을 개발하는데 기여하리라 기대한다.

Factors Affecting the Recovery of Pilots +Gz Tolerance

  • Park, Myunghwan;Jee, Cheolkyu;Kim, Cheonyoung;Seol, Hyeonju
    • 대한인간공학회지
    • /
    • 제36권5호
    • /
    • pp.535-543
    • /
    • 2017
  • Objective: This study was designed to identify factors affecting pilots' +Gz tolerance recovery from +Gz induced exhaustion. Background: +Gz tolerance of pilots has been considered as a crucial factor to fly the modern high performance fighter aircrafts. However, the factors affecting pilots' G-tolerance recovery from +Gz induced exhaustion have not been examined in the acceleration research community. Method: A centrifuge profile consisting of a high +Gz run for pilot's exhaustion and a low +Gz run for pilot's recovery and another high +Gz runs for pilot's second exhaustion was designed. The subjects' +Gz tolerance recovery ratio was measured by ratio of second high +Gz run time to the first high +Gz run time. The subjects' +Gz tolerance recovery rate was measured by dividing the subjects' +Gz tolerance recovery ratio by the low +Gz run time. The subjects' G-tolerance recovery rate was analyzed with respect to the subjects' personal factors including subjects' anthropometric and physiologic characteristics, flight time, flying aircraft type and so on. Results: The subjects' previous three-month flight hours (r=-0.336, p=0.039), six-month flight hours (r=-0.403, p=0.012) and one-year flight hours (r=-0.329, p= 0.044) correlated with the subjects' G-tolerance recovery rate. Conclusion: The subjects' G-tolerance recovery rate is clearly related to the subjects' previous flight hours. However, the subjects' anthropometric and physiologic characteristics do not show any statistically significant correlation with the subjects' G-tolerance recovery rate. Application: This research provides a safety critical insight to aviation community by identifying the factors to affect the gravity-induced loss of consciousness (GLOC) of pilots.