• Title/Summary/Keyword: GLIMMER

Search Result 4, Processing Time 0.018 seconds

A Study on Construction of Integrated Prokaryotes Gene Prediction System (통합형 미생물 유전자 예측 시스템의 구축에 관한 연구)

  • Chang Jong-won;Ryoo Yoon-kyu;Ku Ja-hyo;Yoon Young-woo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2005
  • As a large quantity of Genome sequencing has happened to be done a very much a surprising speed in short period, an automatic genome annotation process has become prerequisite. The most difficult process among with this kind of genome annotation works is to finding out the protein-coding genes within a genome. The main 2 subjects of gene prediction are Eukaryotes and Prokaryotes ; their genes have different structures, therefore, their gene prediction methods will also obviously varies. Until now, it is found that among of the 231 genome sequenced species, 200 have been found to be prokaryotes, therefore, for study of biotechnology studies, through comparative genomics, prokaryotes, rather than eukaryotes could may be more appropriate than eukaryotes. Even more, prokaryotes does not have the gene structure called an intron, so it makes the gene prediction easier. Former prokaryotes gene predictions have been shown to be 80%~ to 90% of accuracy. A recent study is aiming at 100% of gene prediction accuracy. In this paper, especially in the case of the E. coli K-12 and S. typhi genomes, gene prediction accuracy which showed 98.5% and 98.7% was more efficient than previous GLIMMER.

  • PDF

Adjustment of Middle-aged People with Hemiplegia after a Stroke (뇌졸중 후 편마비를 가진 중년기 환자의 적응과정)

  • Lee Hwa-Jin;Yi Myung-Sun
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.5
    • /
    • pp.792-802
    • /
    • 2006
  • Purpose: The purpose of this study was to understand the adjustment process of middle-aged people in Korea with hemiplegia after a stroke. Method: For this study, the grounded theory method was utilized. Results: After constant comparative analysis, the core category emerged as 'rebuilding the body which was ruined'. In addition, the causal conditions were 'restriction of physical function', and 'loss of roles'. The adjustment process consisted of the 'facing reality phase', 'overcoming depression phase', 'overcoming physical limits phase' and 'reestablishing roles phase' The main strategies in the facing reality phase were 'holding on to a glimmer of hope', 'getting away from the harsh reality' and 'facing up to the reality'. The main strategies in the overcoming depression phase were 'soothing oneself', 'Self-introspection' and 'restoring self-esteem'. In addition, the main strategies in the self-initiative overcoming physical limits phase was 'discovering personal strategies and striving to recover'. The main strategies in the reestablishing roles phase were 'reestablishing a parents' role', 'reestablishing a spouse's role' and 'reestablishing social roles'. Conclusion: In conclusion, even though many middle aged stroke patients remained in the depression phase, most of them who overcame depression strived to conquer physical limits on their own initiative.

Inference of Aspergillus fumigatus Pathways by Computational Genome Analysis: Tricarboxylic Acid Cycle (TCA) and Glyoxylate Shunt

  • Do, Jin-Hwan;Anderson, Michael-J.;Denning, David-W.;Erich, Bornberg-Bauer
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.74-80
    • /
    • 2004
  • Aspergillus fumigatus is one of the most common fungi in the human environment, both in-doors and out-doors. It is the main causative agent of invasive aspergillosis, a life-threatening mycosis among immunocompromised patients. The genome has been sequenced by an international consortium, including the Wellcome Trust Sanger Institute (U.K.) and The Institute for Genomic Research (TIGR, U.S.A.), and a ten times whole genome shotgun sequence assembly has been made publicly available. In this study, we identified tricarboxylic acid (TCA) cycle enzymes of A. fumigatus by comparative analysis with four other fungal species. The open reading frames showed high amino acid sequence similarity with the other fungal citric acid enzymes and well-conserved functional domains. All genes present in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa were also found in A. fumigatus. In addition, we identified four A. fumigatus genes coding for enzymes in the glyoxylate shunt, which may be required for fungal virulence. The architecture of multi-gene encoded enzymes, such as isocitrate dehydrogenase, 2-ketoglutarate, succinyl-CoA synthetase, and succinate dehydrogenase was well conserved in A. fumigatus. Furthermore, our results show that genes of A. fumigatus can be detected reliably using GlimmerM.

Food Security through Smart Agriculture and the Internet of Things

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.33-42
    • /
    • 2022
  • One of the most pressing socioeconomic problems confronting humanity on a worldwide scale is food security, particularly in light of the expanding population and declining land productivity. These causes have increased the number of people in the world who are at risk of starving and have caused the natural ecosystems to degrade at previously unheard-of speeds. Happily, the Internet of Things (IoT) development provides a glimmer of light for those worried about food security through smart agriculture-a development that is particularly relevant to automating food production operations in order to reduce labor expenses. When compared to conventional farming techniques, smart agriculture has the benefit of maximizing resource use through precise chemical input application and regulation of environmental factors like temperature and humidity. Farmers may make data-driven choices about the possibility of insect invasion, natural disasters, anticipated yields, and even prospective market shifts with the use of smart farming tools. The technical foundation of smart agriculture serves as a potential response to worries about food security. It is made up of wireless sensor networks and integrated cloud computing modules inside IoT.