• Title/Summary/Keyword: GLASS

Search Result 12,045, Processing Time 0.031 seconds

Finite Element Analysis of Glass Lens Forming Process Using Open Die (개방형 금형을 이용한 유리 렌즈 성형 해석)

  • 나진욱;임성한;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.296-301
    • /
    • 2003
  • Though a glass tens has outstanding optical performance, it has not been widely used because manufacturing process shows poor productivity and high cost. However, press-forming method of glass lens overcomes these disadvantages with mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform is precisely measured in order to prevent incomplete products and to increase in life of die. The present. paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameters of open die are selected on the basis of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

Fabrication of Bulk Metallic Glass Composites by Mechanical Milling with Subsequent Spark Plasma Sintering Process (기계적 밀링 및 방전 플라즈마 소결 공정을 이용한 벌크 비정질 복합재의 제조)

  • Lee, Jin-Kyu;Kim, Taek-Soo;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.197-201
    • /
    • 2007
  • Bulk metallic glass (BMG) composite was fabricated by consolidation of milled metallic glass composite powders. The metallic glass composite powder was synthesized by a controlled milling process using the Cu-based metallic glass powder blended with 30 vol% Zr-based metallic glass powders. The milled composite powders showed a layered structure with three metallic phases, which is formed as a result of mechanical milling. By spark plasma sintering of milled metallic glass powders in the supercooled liquid region, a fully dense BMG composite was successfully synthesized.

Preparation of Carbon-Containing Silica Glass by Heat Treatment of Ormosil (세라믹/고분자 복합체의 열처리에 의한 탄소 함유 실리카 유리의 제조)

  • 김구대;이동아;박지애;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.459-464
    • /
    • 1999
  • A carbon-containing silica glass was prepared from orgaincally modified silicate(Ormosil) by heat treatment in N2 atmosphere after the ormosil was synthesized using sol-gel method. The Ormosil was fabricated from the TEOS as the inorganic component and the PDMS as the organic component. The Ormosil changed to balck-coloured glass by carbon decomposed from the PDMS when the Ormosil was heated to 450$^{\circ}C$ 20hrs. A dense silicon oxycarbide glass with 2.08 g/cm3 was obtained by heating the Ormosil at 1050$^{\circ}C$ 10hrs. The microstructure of the carbon-containing silica glass was observed by SEM and the SiOxC4-x structure was confirmed by XPS measurement. The densification of the glass was studied by measurements of specific surface area linear shrinkage and geometric density.

  • PDF

Effects of Physical Properties of Glass on the TCR of $RuO_2$ Thick Film Resistors for Hybrid Integrated Circuits (HIC) (HIC용 $RuO_2$ 후막저항체에서 유리의 물리적 성질이 TCR에 미치는 영향)

  • Lee, B.S.;Lee, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.974-978
    • /
    • 1993
  • Glass viscosity effects on the electrical properties and microstructure of RuO2 based thick film resistors (TFR) using alumina modified lead borosilicate glasses were studied. AT 85$0^{\circ}C$, the glass viscosities were increased from 4.24Pa.s to 51.5Pa.s when the alumina was added from none to 14 weight percent to the standard glass of 63% PbO, 25% B2O3 and 12% SiO2. The resistivities of resistors were generally decreased and the microstructure development was retarded as the viscosity of the glass increased. This is contrary to the generally accepted thought that the low resistivity is due to fast microstructure development kinetics in TFR. Even though the glass viscosity retards the microstructure development kinetics, the overall network formations are favored for higher viscosity of glass, such that the sheet resistivities were decreased as the glass viscosity increased.

  • PDF

The Elastic Modulus of the Sintered Glass Frit (Glass Frit 소결체의 탄성계수)

  • 이병철;김명정;류봉기
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1138-1140
    • /
    • 2003
  • To investigate the relation between the sintering degree and the elastic modulus of sintered glass, ball-milled commercial soda-lime-silica glass were used. It was heat-treated at various temperatures and for various times, and then the density and elastic modulus of sintered glass frit were measured. The experimental results showed a strong correlation between them.

The Characteristics of P.H.C Pile using Admixture by Waste TFT-LCD Glass Powder (폐 TFT-LCD 유리분말을 혼입한 고강도 콘크리트 파일의 특성)

  • Jeon, Seong-Hwan;Min, Kyung-San;Soh, Yang-Seob
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.419-425
    • /
    • 2010
  • In order to examine the P.H.C pile raw material using glass forming ceramic. The used materials is ordinary portland cement, waste TFT-LCD glass powder and reactive agent(Ca$(OH)_2$). The first experiment is characteristics analysis of the waste TFT-LCD glass powder, For the second experiment is mortar and concrete compressive strength for using of the concrete file raw material for waste TFT-LCD glass powder. The results of experiment showed that the substitution ratio of 10% waste TFT-LCD glass powder and 1% reactive agent(Ca$(OH)_2$) was excellent at a point of view for the physical characteristic. The study's most important finding is that the recycling of waste TFT-LCD glass powder.

Analysis on Glass-Bead Type Retroreflector's Optical Characteristics (유리구슬형 재귀반사기의 광학적 특성 해석)

  • Lee, E.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.165-173
    • /
    • 1994
  • Retroreflector is different from other reflecting surfaces as it mades reflection in which radiation is returned in directions close to its incoming direction. Because of this characteristics, retroreflectors find many applications in traffic safety related areas. Retroreflectors are usually made using comer cubes, or partially coated glass beads. These glass beads can be made very small, so that they can be coated on sheets or mixed with paints. The design of glass type retroreflector depends on glass bead's shape and material, and its optical characteristics are related to the refractive index of glass. In this paper, a method of anlyzing glass bead type retroreflector's sptical characteristics with respect to shape and optica property of the glass, is presented. First, the coefficient of retroreflection, which is a measure of retroreflector's optical characteristics, is derived analytically using geometrical optics method. And the result is plotted using numerical methods. The results show good match with those obtained experimentally, which were supplied from a commercial retroreflector manufacturer.

  • PDF

Mechanical properties of recycled fine glass aggregate concrete under uniaxial loading

  • Liang, Jiong-Feng;Yang, Ze-Ping;Yi, Ping-Hua;Wang, Jian-Bao
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.275-285
    • /
    • 2015
  • This paper reports the results of an experimental study on the compressive strength and the stress-strain curve (SSC) of recycled fine glass aggregate concrete with different replacement percentages of recycled fine glass aggregate. The results show that the recycled fine glass aggregate contents have significant impact on the workability, compressive strength, the elastic modulus, the peak and the ultimate strains of recycled fine glass aggregate concrete. Analytical expressions for the stress-strain relationship of recycled fine glass aggregate concrete are given, which can satisfactorily describe the effect of the recycled fine glass aggregate on the SSC.

Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application (PV용 투명유리와 G/G모듈의 광학적 특성 평가 및 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, we analyze the electrical optical characteristics of transparent glass for photovoltaic and glass-glass module application. The elemental facts from raw glass to laminated glass with solar cells are analyzed using UV spectrophotometer and spectroradiometer. From the data of transmittance and reflectance, the optimum PV module processing condition and selection of material for fabrication should be considered deeply for obtaining high module efficiency. Also we introduce two glasses which has 2%$\sim$4% higher transmittance using coating technology with anti-reflection material. From this experiment, we try to give some basic information for PV module manufacturing industry. The detail description is specified as the following paper.

Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM (VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성)

  • Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.