• Title/Summary/Keyword: GISOC

Search Result 6, Processing Time 0.017 seconds

Analyses on the Initial Charge-Discharge Characteristics of Half and Full Cells for the Lithium Secondary Battery using by the Gradual Increasing of State of Charge(GISOC) (충전용량점증분석법(GISOC)에 의한 리튬이차전지 Half Cell 및 Full Cell의 초기 충방전 특성 분석)

  • 도칠훈;진봉수;문성인;윤문수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.53-61
    • /
    • 2004
  • Characteristics of half cells of graphite/lithium and LiCoO$_2$/lithium, and full cells of graphite/LiCoO$_2$/ were analyzed by the use of GISOC(the gradual increasing of the state of charge). GISOC analyses generated IIE(the initial intercalation efficiency), which represents lithium intercalation property of the electrode material, and IIC$_{s}$(the initial irreversible capacity by the surface), which represents irreversible reaction between the electrode surface and electrolyte. Linear-fit range of graphite and LiCo/O$_2$electrodes were respectively 370 and 150 mAh/g based on material weight. IIE of graphite and LiCo/O$_2$electrodes were respectively 93∼94 % and 94∼95 %, and IICs of graphite and LiCo/O$_2$electrodes were 15∼17 mAH/g and 0.3∼1.7 mAh/g, respectively. IIE of graphite/LiCo/O$_2$full cell for GX25 and DJG311 as graphite showed 89∼90 %, which IIE value was lower than IIE of half cell of the cathode and the anode. Parameters of IIE and IIC$_{s}$ can also be used to represent not only half cell but also full cell. The characteristics of the full cell can be simulated through the correlative interpretation of potential profile, IIE, and IIC$_{s}$ of half cells.cells.

A Study on the Electrochemical Properties of Carbon Nanotube Anodes Using a Gradual Increasing State of Charge Method

  • Doh, Chil-Hoon;Park, Cheol-Wan;Jin, Bong-Soo;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.21-25
    • /
    • 2004
  • From the gradual increasing state of charge (GISOC) observations, electrochemical behavior of multi-walled carbon nanotube│(lM LiP $F_{6}$ , EC,DEC,DME 3:5:5 volume ratio)│lithium cells was evaluated using the galvanostatic charge-discharge process. A MWCNT delivers a specific charge capacity of 1,300 mAh/g in a Li cell when cycled up to an end voltage of 0 V (vs. Li/L $i^{+}$ )at a constant current rate every 10 hours. However, in the present study, the specific discharge capacity obtained is 338 mAh/g, thus amounting to a coulombic efficiency of only 26%. Further, when the MWCNT│Li cells were tested using the GISOC method, two distinguishable linear-fit ranges were observed due to the intercalation/deintercalation of lithium, which were found to have II $E_1$, IIC $s_1$ and II $E_2$of 27.3%, 372 mAh/g, and 25.5%, respectively. Q $c_1$, could be calculated from the data of IIE and IICs of each range by the modified equation "II $C_{sum}$= $\Sigma$( $Q_{C}$- $Q_{D}$)=(II $E_{1}$$^{-1}$ ) $Q_{Dl}$ +(II $E_2$$^{-1}$ -1) ( $Q_{D2}$- $Q_{Dl}$ ) + IIC $s_1$= $Q_{Cl}$ - $Q_{Dl}$ ". Results of the GISOC method could be converted to the results of galvanostatic charge-discharge process, irrespective of the state of charge of the cell or battery.ery.y.y.

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

Development of Silicon Coated by Carbon with PVDF Precursor and Its Anode Characteristics for Lithium Batteries (PVDF 전구체를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo;Choi, Im-Goo;Park, Cheol-Wan;Lee, Kyeong-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.636-643
    • /
    • 2006
  • Si-C materials were synthesized by the heating the mixture of silicon and polyvinylidene fluoride (PVDF). The electrochemical properties of the Si-C materials as the high capacitive anode materials of lithium secondary batteries were evaluated by the galvanostatic charge-discharge test through 2032 type $Si-C{\mid}Li$ coin cells. Charge-discharge tests were performed at C/10 hour rate(C = 372 mAh/g). Initial discharge and charge capacities of $Si-C{\mid}Li$ cell using a Si-C material derived from PVDF(20wt.%) were found to be 1,830 and 526 mAh/g respectively. The initial discharge-charge characteristics of the developed Si-C electrode were analyzed by the electrochemical galvanostatic test adopting the capacity limited charge cut-off condition(GISOC). The range of reversible specific capacity IIE(intercalation efficiency at initial discharge-charge) and IICs(surface irreversible specific capacity) were 216 mAh/g, 68 % and 31 mAh/g, respectively.

A Study on the Initial Irreversible Capacity of Lithium Intercalation Using Gradually Increasing State of Charge

  • Doh, Chil-Hoon;Jin, Bong-Soo;Park, Chul-Wan;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.189-193
    • /
    • 2003
  • Initial irreversible capacity (IIC) can be defined by means of the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface (IICs) with the linear-fit range of the intercalation so as to precisely express the irreversibility of an electrode-electrolyte system. Their relationship was IIC = Qc - Q$_{D}$ = (IIE$^{-1}$ - 1) Q$_{D}$ + IICs in the linear-fit range of IIE. Here, Qc and Qd signify charge and discharge capacity, respectively, based on a complete lithium ion battery cell. Charge indicates lithium insertion to carbon anode. Two terms of IIE and IICs depended on the types of active materials and compositions of the electrode and electrolyte but did not change with charging state. In an ideal electrode-electrolyte system, IIE and IICs would be 100%, 0 mAh/g for the electrode and mAh for the cell, respectively. These properties can be easily obtained by the Gradual Increasing of State of Charge (GISOC).OC).

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).