• Title/Summary/Keyword: GIS with VBA

Search Result 7, Processing Time 0.021 seconds

CROP MANAGEMENT SYSTEM BASED ON HIGH SPATIAL RESOLUTION IMAGES

  • Kim Seong Joon;Kwon Hyung Joong;Park GeunAe;Lee Mi Seon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.257-259
    • /
    • 2005
  • A crop management system was developed using Visual Basic and ArcGIS VBA. The system is operated on ArcGlS 8.3 with Microsoft Access MOB. Landsat +ETM, KOMPSAT-l EOC, ASTER VNIR and IKONOS panchromatic (pan) and multi-spectral (MIS) images were included in the system to understand what kind of agriculture-related information can be extracted for each images. Agriculture related data inventories using crop cover information such as texture and average pixel value of the crop based on cultivation calendar were designed ,and implemented. Three IKONOS images (May 25,2001, December 25,2001, October 23,2003) were loaded in the system to show crop cover characteristics such as rice, pear, grape, red pepper, garlic, and surface water cover of reservoir with field surveys. GIS layers such as DEM (Digital Elevation Model), stream, road, soil, land use and administration boundary were also supplied and can be overlaid with images to enhance the understanding the general agricultural characteristics and identifying the location easily.

  • PDF

Development of Crop Information System using Satellite Images

  • Kim, Seong-Joon;Kwon, Hyung-Joong;Park, Geun-Ae;Lee, Mi-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.3-9
    • /
    • 2005
  • A computer system for crop information was developed using Visual Basic and ArcGIS VBA. The system is operated on ArcGIS 8.3 with Microsoft Access MDB. Landsat +ETM, KOMPSAT-1 EOC, ASTER VNIR and IKONOS panchromatic (Pan) and multi-spectral (MIS) images were included in the system to extract agricultural land use items identifiable at various spatial resolutions of images. Agriculture related data inventories using crop cover information such as texture and average pixel value of each band based on crop cultivation calendar were designed and implemented. Three IKONOS images were loaded in the system to show crop cover characteristics such as rice, pear, grape, red pepper, garlic, and surface water cover of reservoir with field surveys. GIS layers such as DEM (Digital Elevation Model), stream, road, soil, land use and administration boundary were prepared to understand the related characteristics and identify the location easily.

Development of Non-point Source Pollutant Reclassification System Using GIS (GIS를 이용한 유역별 비점오염원 통계자료 재분류 시스템 구축)

  • Jeong, Han-Seok;Cho, Young-Kyoung;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2008-2012
    • /
    • 2007
  • 통계청 등의 기관에 구축되어있는 기본적인 비점오염원 자료들은 행정구역별로 나뉘어져 있지만 실제수계에 도달하는 부하량 산정을 위해서는 유역별로 구분을 다시 해야만 하는 번거로움이 있다. 따라서 본 연구에서는 반복되는 비점오염원 자료의 전처리 과정의 번거로움을 피하기 위하여 지리정보체계(Geographical Infomation System; GIS)와 VBA(Visual Basic for Application)를 이용하여 통계자료의 전처리 과정을 한 번에 처리할 수 있는 시스템을 구축하였다. 본 시스템은 선택한 유역도와 행정구역도를 중첩하여 유역 내 최소행정구역의 점유율을 반영한 통계자료를 사용자 친화적으로 재분류하는 시스템이다. 본 시스템의 적용성 확인을 위하여 새만금유역 내 주상천유역을 대상으로 연구를 실시하였으며, 새만금유역에 포함되는 전라북도 최소행정구역의 토지이용 통계자료만을 기본 데이터로 활용하였다. 본 연구에서 구축된 시스템은 오염부하량 산정에 있어 요구되는 기본적인 데이터를 얻는 것에 있어서 기존의 장시간에 걸친 단순 반복작업을 대신하는 효율적인 시스템이며, ArcGIS에 대한 이해가 부족한 사용자의 경우에도 간단한 시스템조작만으로도 필요한 데이터를 구축할 수 있어 사용자에게 편리함을 제공한다. 향후 본 시스템을 이용하여 비점오염부하량 산정시스템을 개발할 수 있고, 기상자료 등과 같은 수문모형으로의 적용도 가능할 것으로 기대된다.

  • PDF

GIS-based Tunnelling-induced Building/Utility Damage Assessment System-Development and Application (GIS기반의 터널시공에 따른 주변건물/매설관 손상평가 시스템-개발 및 적용)

  • 유충식;전영우;김재훈;박영진;유정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.233-240
    • /
    • 2003
  • A GIS-based tunnelling risk management system (GIS-TURIMS) has been developed in this study The developed system uses ArcView 8.2 as a basic platform and the built-in interface(VBA) has been used to perform first-order simplified analyses for prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis in this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out computationally intensive first-order analyses for ground movement prediction as well as building/utilities damage assessment with fully taking advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation.

  • PDF

Development of A GIS-based Tunnelling-induced Building/Utility Damage Assessment System (GIS 기반의 터널굴착시 건물/매설관 손상평가 시스템 개발)

  • 유충식;김재훈;박영진;유정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.311-318
    • /
    • 2002
  • A GIS-based tunnelling risk management system (GIS-TURIMS) has been developed in this study, The developed system uses ArcView 8.2 as a basic platform and the built-in interface (VBA) has been used to perform first-order simplified analyses for prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis in this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out computationally intensive analyses for ground movement prediction as well as building/utilities damage assessment with fully taking advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation

  • PDF

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Development of Traffic Volume Estimation System in Main and Branch Roads to Estimate Greenhouse Gas Emissions in Road Transportation Category (도로수송부문 온실가스 배출량 산정을 위한 간선 및 지선도로상의 교통량 추정시스템 개발)

  • Kim, Ki-Dong;Lee, Tae-Jung;Jung, Won-Seok;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.233-248
    • /
    • 2012
  • The national emission from energy sector accounted for 84.7% of all domestic emissions in 2007. Of the energy-use emissions, the emission from mobile source as one of key categories accounted for 19.4% and further the road transport emission occupied the most dominant portion in the category. The road transport emissions can be estimated on the basis of either the fuel consumed (Tier 1) or the distance travelled by the vehicle types and road types (higher Tiers). The latter approach must be suitable for simultaneously estimating $CO_2$, $CH_4$, and $N_2O$ emissions in local administrative districts. The objective of this study was to estimate 31 municipal GHG emissions from road transportation in Gyeonggi Province, Korea. In 2008, the municipalities were consisted of 2,014 towns expressed as Dong and Ri, the smallest administrative district unit. Since mobile sources are moving across other city and province borders, the emission estimated by fuel sold is in fact impossible to ensure consistency between neighbouring cities and provinces. On the other hand, the emission estimated by distance travelled is also impossible to acquire key activity data such as traffic volume, vehicle type and model, and road type in small towns. To solve the problem, we applied a hierarchical cluster analysis to separate town-by-town road patterns (clusters) based on a priori activity information including traffic volume, population, area, and branch road length obtained from small 151 towns. After identifying 10 road patterns, a rule building expert system was developed by visual basic application (VBA) to assort various unknown road patterns into one of 10 known patterns. The expert system was self-verified with original reference information and then objects in each homogeneous pattern were used to regress traffic volume based on the variables of population, area, and branch road length. The program was then applied to assign all the unknown towns into a known pattern and to automatically estimate traffic volumes by regression equations for each town. Further VKT (vehicle kilometer travelled) for each vehicle type in each town was calculated to be mapped by GIS (geological information system) and road transport emission on the corresponding road section was estimated by multiplying emission factors for each vehicle type. Finally all emissions from local branch roads in Gyeonggi Province could be estimated by summing up emissions from 1,902 towns where road information was registered. As a result of the study, the GHG average emission rate by the branch road transport was 6,101 kilotons of $CO_2$ equivalent per year (kt-$CO_2$ Eq/yr) and the total emissions from both main and branch roads was 24,152 kt-$CO_2$ Eq/yr in Gyeonggi Province. The ratio of branch roads emission to the total was 0.28 in 2008.