• Title/Summary/Keyword: GIS Data Model

Search Result 1,066, Processing Time 0.029 seconds

A Study on the Estimation of Pollutant Runoff using GIS data and Application to the Closed Watershed (GIS 데이터를 이용한 오염 유출량의 해석과 폐쇄성 수역의 적용에 관한 연구)

  • 강상혁;김승호;권재혁;노구정인
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.263-273
    • /
    • 2002
  • This paper presents desirable water environmental management to a closed watershed. In order to obtain spatially distributed environmental information, GIS data have been used. Elevation data are used to extract stream channels automatically and to divide networks of a watershed. A Digital Elevation Model (DEM) has been developed, validated, and adopted to estimate the runoff of total nitrogen pollutant from watershed. This GIS-linked model can be applied effectively to the watersheds with many sub-streams, and for the estimation of pollutant runoff considering land use change.

  • PDF

Effective 3D Inner Model Visualization for GIS Web Service (GIS 표준 웹 서비스 적용을 위한 3차원 실내모델의 효율적 시각화)

  • Jeong, Jang-Yoon;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.701-711
    • /
    • 2009
  • The inner space of building is increasingly becoming complex as urban activities increase in variety, and the actual space size also increases. This trend necessitate the utilization of three dimensional position information within the inner space of buildings. Standard GIS web service technology and visualization technology are applied to 3D inner space building data to share these information for better decision making in building related applications such as fire evacuation, facilities management and market analysis. This study aims to effectively model and visualize the three dimensional space of building interiors in the GIS aspect, and to be able to share the information through standard GIS web service. The various elements of inner model was assigned and stored into pre-designed spatial database tables respectively. GIS web server was then configured to service the database which was populated with 3D inner model data. On the client side, 3D visualization modules was developed using a 3D graphic rendering S/W engine.

A Study on the Implementation of Microscopic Traffic Simulation Model by Using GIS (GIS를 이용한 미시적 수준의 교통모형 구현에 관한 연구)

  • Kim, Byeongsun
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.79-89
    • /
    • 2015
  • This study aims to design and implement a traffic model that can simulate the traffic behavior on the microscopic level by using the GIS. In the design of the model, the vehicle in the simulation environment recognizes the GIS road centerline data as road network data reflecting number of lanes, speed limit and so on. In addition, the behavior model was designed by dividing functions into the environmental perception model, time headway distribution model, car following model, and lane changing model. The implemented model was applied to Jahamun-road of Jongno-gu district to verify the accuracy of the model. As a result, the simulation results on the Jahamun-road had no great error compared with the actual observation data. In the aspect of usability of model, it is judged that this model will be able to effectively contribute to analysis of amount of carbon emission by traffic, evaluation of traffic flow, plans for location of urban infrastructure and so on.

GIS data conversion and visualization for Ocean model (해양 모델 결과에 대한 GIS 데이터 변환 및 가시화 연구)

  • Jang, Won-Seok;Park, Han-San;Oh, Se-Woong;Park, Jong-Min;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.129-130
    • /
    • 2007
  • A great variety of models including marine ecology model, water quality model, marine fluid model have been used in the marine research. The results of marine model is presented as a numerical value that is difficult for researcher to understand. In this paper, we developed a method for conversing and presenting results of marine models to visual form to improve the visualization of modelling results that is difficult to analyze and applied the method in actual practice.

  • PDF

Data Modeling to Connect HyGIS with Hydrologic Model (HyGIS와 수문모형의 연계 시스템 개발을 위한 데이터 모델링에 관한 연구)

  • Kim, Kyung-Tak;Choi, Yun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.874-878
    • /
    • 2006
  • 수자원 분야에서 이용하고 있는 모형을 구동하기 위해서는 대상 지역의 지형특성과 시계열 자료 및 비공간적 매개변수 등의 많은 정보가 필요하다. 이러한 자료들은 다양한 과정을 거쳐서 모형에 입력되며, 모의대상이 복잡한 구조를 가지고 있거나 모형의 구동조건이 변할 경우, 모형의 구동과 결과의 관리를 위해서는 더욱 많은 노력이 필요하게 된다. 따라서 이러한 자료들을 효과적으로 관리하고 운용하는 것은 모형구동의 효율성과 객관성을 유지하는데 매우 중요한 요소가 될 수 있다. 이를 위하여 국내 기술로 개발된 GIS 기반의 수자원시스템인 HyGIS(Hydro Geographic Information System)와 수자원 모형을 연계하여 운영할 수 있는 시스템을 개발하고자 하며, 이를 HyGIS-Model이라고 한다. 본 연구에서는 HyGIS의 시공간 데이터 모델을 소개하고, HyGIS-Model 중 HyGIS와 SWAT2000 모형이 연계된 시스템(HyGIS-SWAT)을 개발하기 위한 데이터 모델링에 대해서 기술하고자 한다. 연구결과 HyGIS 데이터 모델과 HyGIS-Model 통합시스템 운영 표준은 HyGIS-SWAT 데이터 모델링과 시스템 설계에 효과적으로 적용될 수 있었다. 이를 통하여 GIS와 수자원 모형의 연계 시스템을 개발하기 위한 시스템 설계에 대한 기술을 확보할 수 있었으며, GIS를 이용한 수자원 모형의 입력자료의 생성, 운영 및 모형 구동 결과의 관리에 대한 표준적 절차를 수립할 수 있었다.

  • PDF

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

BIM-GIS Interoperability for Highway Traffic Information Sharing

  • Hu, Xiaoqiang;Bao, Jieyi;Jiang, Yi;Li, Shuo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1051-1058
    • /
    • 2022
  • Information sharing is the main purpose of realizing interoperability between the application domains of Geographic Information System (GIS) and Building Information Modeling (BIM). This paper presents and describes the workflow of BIM-GIS interoperability for highway traffic information sharing. An innovative and automatic Dynamo process was presented to transfer the shapes and attributes of the shapefile from GIS to BIM. On the basis of the transformed BIM model, the detailed traffic data was added and expressed in the form of families and sheets to expand traffic information. Then, the shapes of the model were swept as solid geometries in the BIM environment applying Dynamo. The expanded BIM model was transferred back to the GIS system using the Industry Foundation Classes (IFC) scheme. The mutual communication between BIM and GIS was achieved based on Dynamo and IFC. This paper provides a convenient and feasible way to realize BIM-GIS interoperability for highway traffic information sharing according to the characteristics of highways in terms of graphic expression and model creation.

  • PDF

Modeling of Roads for Vehicle Simulator Using GIS Map Data

  • Im Hyung-Eun;Sung Won-Suk;Hwang Won-Gul;Ichiro Kageyama
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.3-7
    • /
    • 2005
  • Recently, vehicle simulators are widely used to evaluate driver s responses and driver assistance systems. It needs much effort to construct the virtual driving environment for a vehicle simulator. In this study, it is described how to make effectively the roads and the driving environment for a vehicle simulator. GIS (Geographic Information System) is used to construct the roads and the environment effectively. Because the GIS is the integrated system of geographical data, it contains useful data to make virtual driving environment. First, boundaries and centerlines of roads are extracted from the GIS. From boundaries, the road width is calculated. Using centerlines, mesh models of roads are constructed. The final graphic model of roads is constructed by mapping road images to those mesh models considering the number of lanes and the kind of surface. Data of buildings from the GIS are extracted. Each shape and height of building is determined considering the kind of building to construct the final graphic model of buildings. Then, the graphic model of roadside trees is constructed to decide their locations. Finally, the driving environment for driving simulator is constructed by converting the three graphic models with the graphic format of Direct-X and by joining the three graphic models.

An Analysis of Relocation of SW Industries using GIS Flow Map (GIS 흐름도 기법에 의한 소프트웨어 기업 이동의 동태적 분석)

  • Choi, Jun-Young;Oh, Kyu-Shik
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.41-52
    • /
    • 2010
  • This paper analyzed the interregional flow changes of software (SW) industries using a GIS Flow Map. Employment data for SW enterprise headquarters from 1999 until 2008 were constructed according to the Origin-Destination Matrix, and were mapped and analyzed using the Flow Mapper and ArcGIS Flow Data Model. From the result we can identify the decentralization of interregional flow in SW industries and recognize the possibilities of the larger SW enterprises' employment, the higher locational footlooseness. The GIS Flow Map was identified as useful tool for researching growth, decline and spatial movement of industrial clusters that experience business relocation. This method can be applied to understand and visualize urban spatial changes.

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed( II) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(II) - 격자 물수지 모형을 위한 GIS응용 모형 개발 -)

  • 김대식;정하우;김성준;최진용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.35-42
    • /
    • 1995
  • his paper is to develop a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. The model was constituted by three submodels : The input data extraction model (GISINDATA) which prepares cell-based input data automatically for a given watershed, the cell water balance model (CELWAB) which calculates the water balance for a cell and simulates surface runoff of watershed simultaneously by the interaction of cells, and the output data management model (GISOUTDISP) which visualize the results of temporal and spatial variation of surface runoff. The input data extraction model was developed to solve the time-consuming problems for the input-data preparation of distributed hydrologic model. The input data for CELWAB can be obtained by extracting ASCII data from a vector map. The output data management model was developed to convert the storage depth and discharge of cells into grid map. This model enables to visualize the spatial formulation process of watershed storage depth and surface runoff wholly with time increment.

  • PDF