• Title/Summary/Keyword: GIS 기술

Search Result 1,442, Processing Time 0.03 seconds

Conversion of Camera Lens Distortions between Photogrammetry and Computer Vision (사진측량과 컴퓨터비전 간의 카메라 렌즈왜곡 변환)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.267-277
    • /
    • 2019
  • Photogrammetry and computer vision are identical in determining the three-dimensional coordinates of images taken with a camera, but the two fields are not directly compatible with each other due to differences in camera lens distortion modeling methods and camera coordinate systems. In general, data processing of drone images is performed by bundle block adjustments using computer vision-based software, and then the plotting of the image is performed by photogrammetry-based software for mapping. In this case, we are faced with the problem of converting the model of camera lens distortions into the formula used in photogrammetry. Therefore, this study described the differences between the coordinate systems and lens distortion models used in photogrammetry and computer vision, and proposed a methodology for converting them. In order to verify the conversion formula of the camera lens distortion models, first, lens distortions were added to the virtual coordinates without lens distortions by using the computer vision-based lens distortion models. Then, the distortion coefficients were determined using photogrammetry-based lens distortion models, and the lens distortions were removed from the photo coordinates and compared with the virtual coordinates without the original distortions. The results showed that the root mean square distance was good within 0.5 pixels. In addition, epipolar images were generated to determine the accuracy by applying lens distortion coefficients for photogrammetry. The calculated root mean square error of y-parallax was found to be within 0.3 pixels.

A tool development for forced striation and delineation of river network from digital elevation model based on ModelBuilder (모델빌더 기반 하천망의 DEM 각인 및 추출 툴 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.515-529
    • /
    • 2019
  • Geospatial information for river network and watershed boundary have played a fundamental roles in terms of river management, planning and design, hydrological and hydraulic analysis. Irrespective of their importance, the lack of punctual update and improper maintenance in currently available river-related geospatial information systems has revealed inconsistency issues between individual systems and spatial inaccuracy with regard to reflecting dynamically transferring riverine geography. Given that digital elevation models (DEMs) of high spatial resolution enabling to reproduce precise river network are only available adjacent to national rivers, DEMs with poor spatial resolution lead to generate unreliable river network information and thereby reduce their extensible applicabilities. This study first of all evaluated published spatial information available in Korea with respect to their spatial accuracy and consistency, and also provides a methodology and tool to modify existing low resolution of DEMs by means of striation of conventional or digitized river network to replicate input river network in various degree of further delineation. The tool named FSND was designed to be operated in ArcGIS ModelBuilder which ensures to automatically simulate river network striation to DEMs and delineation with different flow accumulation threshold. The FNSD was successfully validated in Seom River basin to identify its replication of given river network manually digitized based on recent aerial photograph in conjunction with a DEM with 30 meter spatial resolution. With the derived accuracy of reproducibility, substantiation of a various order of river network and watershed boundary from the striated DEM posed tangible possibility for highly extending DEMs with low resolution to be capable of producing reliable riverine spatial information subsequently.

Evaluation of Grid-Based ROI Extraction Method Using a Seamless Digital Map (연속수치지형도를 활용한 격자기준 관심 지역 추출기법의 평가)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2019
  • Extraction of region of interest for satellite image classification is one of the important techniques for efficient management of the national land space. However, recent studies on satellite image classification often depend on the information of the selected image in selecting the region of interest. This study propose an effective method of selecting the area of interest using the continuous digital topographic map constructed from high resolution images. The spatial information used in this research is based on the digital topographic map from 2013 to 2017 provided by the National Geographical Information Institute and the 2015 Sejong City land cover map provided by the Ministry of Environment. To verify the accuracy of the extracted area of interest, KOMPSAT-3A satellite images were used which taken on October 28, 2018 and July 7, 2018. The baseline samples for 2015 were extracted using the unchanged area of the continuous digital topographic map for 2013-2015 and the land cover map for 2015, and also extracted the baseline samples in 2018 using the unchanged area of the continuous digital topographic map for 2015-2017 and the land cover map for 2015. The redundant areas that occurred when merging continuous digital topographic maps and land cover maps were removed to prevent confusion of data. Finally, the checkpoints are generated within the region of interest, and the accuracy of the region of interest extracted from the K3A satellite images and the error matrix in 2015 and 2018 is shown, and the accuracy is approximately 93% and 72%, respectively. The accuracy of the region of interest can be used as a region of interest, and the misclassified region can be used as a reference for change detection.

Development of Mask-RCNN Model for Detecting Greenhouses Based on Satellite Image (위성이미지 기반 시설하우스 판별 Mask-RCNN 모델 개발)

  • Kim, Yun Seok;Heo, Seong;Yoon, Seong Uk;Ahn, Jinhyun;Choi, Inchan;Chang, Sungyul;Lee, Seung-Jae;Chung, Yong Suk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • The number of smart farms has increased to save labor in agricultural production as the subsidy become available from central and local governments. The number of illegal greenhouses has also increased, which causes serious issues for the local governments. In the present study, we developed Mask-RCNN model to detect greenhouses based on satellite images. Greenhouses in the satellite images were labeled for training and validation of the model. The Mask-RC NN model had the average precision (AP) of 75.6%. The average precision values for 50% and 75% of overlapping area were 91.1% and 81.8%, respectively. This results indicated that the Mask-RC NN model would be useful to detect the greenhouses recently built without proper permission using a periodical screening procedure based on satellite images. Furthermore, the model can be connected with GIS to establish unified management system for greenhouses. It can also be applied to the statistical analysis of the number and total area of greenhouses.

A Study on Selection of an Overhead Electrical Transmission Line Corridor with Social Conflict (사회적 갈등을 갖는 송전선로 경과지 선정에 관한 연구)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Hak-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.577-584
    • /
    • 2021
  • Electrical energy is an essential component in present societies, which is an important basis for our technological society. In the design of new power infrastructure, it is important to consider the psychological aspects of how our culture considers and aspects its development as an integral component of the community environment. The construction of new high voltage overhead transmission lines has become a controversial issue for public policy of government due to social opposition. The members of community are concerned about how these power lines may have an impact on their lives, basically caused by their effects on health and safety. The landscape and visual impact is one of the most impact that can be easily perceived for local community. The computer 3D simulation of new landscape is illustrated by a real life use corresponding to the selection of the power line route with least observability for local community. This paper used ArcGIS(geographic information system tool) for planning, survey, basic route and detailed route, route for implementation of transmission line corridor. Also, the paper showed the map of natural environment, living environment, safety and altitude using database of power line corridor, and transmission siting model was developed by this study. The suggested landscape of computer simulation with lowest visibility on a power line zone can contribute to reducing oppositions of local community and accelerating the construction of new power lines.

Interregional Variant Factor Analysis of Hypertension Treatment Rate in COVID-19 (코로나19에서 고혈압 치료율의 지역 간 변이요인 분석)

  • Park, Jong-Ho;Kim, Ji-Hye
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.469-482
    • /
    • 2022
  • The purpose of this study is to analyze regional variation factors of hypertension treatment rate in COVID-19 based on the analysis results based on ecological methodology. To this end, data suitable for ecological analysis were collected from the Korea Centers for Disease Control and Prevention's regional health statistics, local government COVID-19 confirmed cases, National Health Insurance Corporation, Health Insurance Review and Assessment Service's welfare statistics, and Korea Transport Institute's traffic access index. Descriptive statistics and correlation analysis were conducted using SPSS Statistics 23 for regional variation and related factors in hypertension treatment rate, and geographical weighted regression analysis was conducted using Arc GIS for regional variation factors. As a result of the study, the overall explanatory power of the calculated geo-weighted regression model was 27.6%, distributed from 23.1% to 33.4% by region. As factors affecting the treatment rate of hypertension, the higher the rate of basic living security medical benefits, diabetes treatment rate, and health institutions per 100,000 population, the higher the rate of hypertension treatment, the lower the number of COVID-19 confirmed patients, the lower the rate of physical activity, and the alcohol consumption. Percentage of alcohol consumption decreased due to COVID-19 pandemic. It was analyzed that the lower the ratio, the higher the treatment rate for hypertension. Based on these results, the analysis of regional variables in the treatment rate of hypertension in COVID-19 can be expected to be effective in managing the treatment rate of hypertension, and furthermore, it is expected to be used to establish community-centered health promotion policies.

Analysis of PM2.5 Pattern Considering Land Use Types and Meteorological Factors - Focused on Changwon National Industrial Complex - (토지이용 유형과 기상 요인을 고려한 PM2.5 발생 패턴 분석 - 창원국가산업단지를 중심으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.1-17
    • /
    • 2022
  • This study analyzed the PM2.5 pattern by using data measured for one year from June 2020 to May 2021 by 21 low-cost sensors installed near the Changwon National Industrial Complex in Changwon, Gyeongsangnam-do. For the PM2.5 pattern, the land use types around the measuring points and meteorological factors such as air temperature and wind speed were considered. The PM2.5 concentration was high from November to March in winter, and from 1 to 9 in the morning and early in the morning by time zone. The concentration of PM2.5 was higher as it got closer to the industrial area, but the concentration was lower in the residential area and public facility area. In terms of meteorological factors, the higher the air temperature and wind speed, the lower the concentration of PM2.5. As a result of this study, it was possible to identify the PM2.5 patter near Changwon National Industrial Complex. This result will be useful data that can be used in urban and environmental planning to improve air quality including PM2.5 in urban area in the future.

The Estimation of Soil Moisture Index by SWAT Model and Drought Monitoring (SWAT 모형을 이용한 토양수분지수 산정과 가뭄감시)

  • Hwang, Tae Ha;Kim, Byung Sik;Kim, Hung Soo;Seoh, Byung Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.345-354
    • /
    • 2006
  • Drought brings on long term damage in contrast to flood, on economic loss in the region, and on ecologic and environmental disruptions. Drought is one of major natural disasters and gives a painful hardship to human beings. So we have tried to quantify the droughts for reducing drought damage and developed the drought indices for drought monitoring and management. The Palmer's drought severity index (PDSI) is widely used for the drought monitoring but it has the disadvanges and limitations in that the PDSI is estimated by considering just climate conditions as pointed out by many researchers. Thus this study uses the SWAT model which can consider soil conditions like soil type and land use in addition to climate conditions. We estimate soil water (SW) and soil moisture index (SMI) by SWAT which is a long term runoff simulation model. We apply the SWAT model to Soyang dam watershed for SMI estimation and compare SMI with PDSI for drought analysis. Say, we calibrate and validate the SWAT model by daily inflows of Soyang dam site and we estimate long term daily soil water. The estimated soil water is used for the computation of SMI based on the soil moisture deficit and we compare SMI with PDSI. As the results, we obtained the determination coefficient of 0.651 which means the SWAT model is applicable for drought monitoring and we can monitor drought in more high resolution by using GIS. So, we suggest that SMI based on the soil moisture deficit can be used for the drought monitoring and management.

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Smart City Techniques for Urban Regeneration Research on the Application to Local Cities : A Case of Samho District, Yangsan-City (도시재생 활성화를 위한 스마트도시 기법 지방도시 적용에 관한 연구 -양산시 삼호지구를 중심으로-)

  • Seung-Jong HA;Tae-Kyung BAEK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.3
    • /
    • pp.76-86
    • /
    • 2024
  • This study sought to introduce smart urban regeneration to solve the problem of aging and substandard housing in large cities that occurred during the rapid industrialization and urbanization of local cities in Korea. Accordingly, this study aims to activative the old downtown through the convergence of the existing urban regeneration project and smart city project and to improve the physical, social, and economic aspects. As a research method, the literature related to smart cities and urban regeneration was systematically reviewed, and the possibility of introducing smart city services in the Samho-dong district of Yangsan City was explored through domestic and foreign case analysis. As a result of the research, the necessity of smart urban regeneration was highlighted, and the conclusion was reached that it is important to improve the efficiency of urban regeneration projects by using information and communication technology and strengthen sustainability by urban regeneration. This study is expected to contribute to the activative the old downtown and the improvement of the quality of life of citizens, and it is necessary to strengthen the interaction between smart city and urban regeneration in the future, and the introduction of smart city services suitable for local characteristics is judged to play an important role in sustainable urban development through local community and citizen participation.