• Title/Summary/Keyword: GIS자료

Search Result 2,043, Processing Time 0.022 seconds

Detection of Arctic Summer Melt Ponds Using ICESat-2 Altimetry Data (ICESat-2 고도계 자료를 활용한 여름철 북극 융빙호 탐지)

  • Han, Daehyeon;Kim, Young Jun;Jung, Sihun;Sim, Seongmun;Kim, Woohyeok;Jang, Eunna;Im, Jungho;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1177-1186
    • /
    • 2021
  • As the Arctic melt ponds play an important role in determining the interannual variation of the sea ice extent and changes in the Arctic environment, it is crucial to monitor the Arctic melt ponds with high accuracy. Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), which is the NASA's latest altimeter satellite based on the green laser (532 nm), observes the global surface elevation. When compared to the CryoSat-2 altimetry satellite whose along-track resolution is 250 m, ICESat-2 is highly expected to provide much more detailed information about Arctic melt ponds thanks to its high along-track resolution of 70 cm. The basic products of ICESat-2 are the surface height and the number of reflected photons. To aggregate the neighboring information of a specific ICESat-2 photon, the segments of photons with 10 m length were used. The standard deviation of the height and the total number of photons were calculated for each segment. As the melt ponds have the smoother surface than the sea ice, the lower variation of the height over melt ponds can make the melt ponds distinguished from the sea ice. When the melt ponds were extracted, the number of photons per segment was used to classify the melt ponds covered with open-water and specular ice. As photons are much more absorbed in the water-covered melt pondsthan the melt ponds with the specular ice, the number of photons persegment can distinguish the water- and ice-covered ponds. As a result, the suggested melt pond detection method was able to classify the sea ice, water-covered melt ponds, and ice-covered melt ponds. A qualitative analysis was conducted using the Sentinel-2 optical imagery. The suggested method successfully classified the water- and ice-covered ponds which were difficult to distinguish with Sentinel-2 optical images. Lastly, the pros and cons of the melt pond detection using satellite altimetry and optical images were discussed.

A Study of a Correlation Between Groundwater Level and Precipitation Using Statistical Time Series Analysis by Land Cover Types in Urban Areas (시계열 분석법을 이용한 도시지역 토지피복형태에 따른 지하수위와 강수량의 상관관계 분석)

  • Heo, Junyong;Kim, Taeyong;Park, Hyemin;Ha, Taejung;Kang, Hyungbin;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1819-1827
    • /
    • 2021
  • Land-use/cover change caused by rapid urbanization in South Korea is one of the concerns in flood risk management because groundwater recharge by precipitation hardly occurs due to an increase in impermeable surfaces in urban areas. This study investigated the hydrologic effects of land-use/cover on groundwater recharge in the Yeonje-gu district of Busan, South Korea. A statistical time series analysis was conducted with temporal variations of precipitation and groundwater level to estimate lag-time based on correlation coefficients calculated from auto-correlation function (ACF), cross-correlation function (CCF), and moving average (MA) at five sites. Landform and land-use/cover within 250 m radius of the monitoring wells(GW01, GW02, GW03, GW04, and GW05) at five sites were identified by land cover and digital map using Arc-GIS software. Long lag-times (CCF: 42-71 days and MA: 148-161 days) were calculated at the sites covered by mainly impermeable surfaces(GW01, GW03, and GW05) while short lag-times(CCF: 4 days and MA: 67 days) were calculated at GW04 consisting of mainly permeable surfaces. The results suggest that lag-time would be one of the good indicators to evaluate the effects of land-use/cover on estimating groundwater recharge. The results of this study also provide guidance on the application of statistical time series analysis to environmentally important issues on creating an urban green space for natural groundwater recharge from precipitation in the city and developing a management plan for hydrological disaster prevention.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.