• Title/Summary/Keyword: GIS, topographical factors

Search Result 47, Processing Time 0.022 seconds

Analysis of Topographical Factors in Woomyun Mountain Debris Flow Using GIS (GIS를 이용한 우면산 토석류 지형인자 분석)

  • Lee, Hanna;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.809-815
    • /
    • 2020
  • A number of investigations and studies have been conducted in various fields regarding the sediment disasters of Mt. Woomyeon that occurred in July 2011. We collected and compared the topographic information of the general points where debris flows did not occur and the collapse points where the debris flow occurred in order to find out the characteristics of the collapse points in Woomyeon mountain. The collected topographic information is altitude, curvature, slope, aspect and TPI(topographic position index). As a result of comparison, there were relatively many collapse points at an altitude of 210m to 250m, and at a slope of 30° to 40°. In addition, the risk of collapse was low in a cell where the curvature was close to 0, and the risk was higher in concave terrain than in convex terrain. In the case of TPI, there was no statistical difference between the general points and the collapse points when the analysis radius was larger than 200m, and there was a correlation with the curvature when the analysis radius was smaller than 50m. In the case of debris flows that are affected by artificial structures or facilities, there is a possibility of disturbing the topographic analysis results. Therefore, if a research on debris flow is conducted on a mountain area that is heavily exposed to human activities, such as Woomyeon mountain, diversified factors must be considered to account for this impact.

Assessment of Soil Loss in Irrigation Reservoir based on GIS (GIS를 이용한 관개용 저수지의 토사유실량 산정에 관한 연구)

  • Park, Woo Sik;Hong, Soon Heon;Ahn, Chang Hwan;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.439-446
    • /
    • 2013
  • This paper is about assessment of soil loss in irrigation reservoir based on GIS. Natural disaster caused by soil loss whose natural incidence has been rapidly reduced due to successful tree planting campaign shows high potential risk, since the latest localized heavy rain resulted from extreme weather event and artificial land development acts as direct factors for land disaster. To prevent it, various techniques and technologies have been used to predict effect of soil loss. However, reliability of techniques and technologies to predict its effect precisely is relatively low so far because the natural disaster by soil loss is taken place by complicated interaction between possible factors and direct factors. Geospatial approach is essential to examine these interactions. In this regard, this study will provide detailed plan to improve prediction reliability for soil loss of irrigation reservoir, using GIS that has Hydrologic -Topographical parameter and digital map as its input parameters.

A Study on the Establishment of the Hydro-Parameter by Using GIS - in Tamjin River Basin - (GIS를 이용한 수문매개변수 설정에 관한 연구 - 탐진강 유역을 중심으로 -)

  • Hwang, Eui-Jin;Kim, Woo-Hyeok;Kim, Young-Gyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.3-12
    • /
    • 2003
  • The main objective of this study is to extract the hydro-Parameter of the Tamjin River basin. A CIS is capable of extracting various hydrological factors from DEM. One of important tasks for hydrological analysis is the division of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a CIS technique. The data of topographical map with scale of 1:25,000 and 1:250,000 in the Tamjin River basin is used for this study and it is converted to DEM date. Various forms of representation of spatial data are handled in main modules and a CRID module of ArcView. A GRID module is used on a stream in order to define watershed boundary. Based on the spatial analysis using those GIS technique, it would be possible to obtain the reasonable results of watershed characteristics. Also, the results show not only that GIS can aid watershed management, research and surveillance, but also that the geometric characteristics as parameters of watershed can be quantified more accurately and easily than conventional graphic methods. From the equations($Y=14632.87{\cdot}X^{-0.542444},\;Y=37014.1{\cdot}X^{-1.058808}$), it can be concluded that the optimal count of flow accumulation is 468 and cell size is 42m for spatial analysis by using GIS technique in Tamjin River basin.

  • PDF

Analysis of Susceptibility in Landslide Distribution Areas (산사태 발생지역에서의 민감성 분석에 관한 연구)

  • 양인태;유영걸;천기선;전우현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.381-384
    • /
    • 2004
  • The goal of this study is to generate a landslide susceptibility map using GIS(geographic information system) based method. A simple and efficient algorithm is proposed to generate a landslide susceptibility map from DEM(digital elevation model) and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, topographical index, landuse, vegetation are defined, because those factors are said to have relevance to landslide and are easy to obtain theirs sources. The weight value for landslide susceptibility is calculated from the density of the area of landslide blocks in each class. Finally, a map of susceptibility zones is produced using the weight value of all controlling factors, and then each susceptibility zone is evaluated by comparing with the distribution of each controlling factor class.

  • PDF

Automatic Analysis Model for Support Emergency Medical Helicopter Landing Zone Using Geographic Information System (GIS를 이용한 비상 의료지원 헬리콥터 착륙지점 자동 분석 모델)

  • Park, Jong-kook;Lee, Eun-seok;Kim, Jong-hee;Kim, Jeong-su;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.338-340
    • /
    • 2014
  • The purpose of this research is to support decision making of emergency rescue system with GIS which selects landing point of emergency rescue for emergency situation on mountains and dropping point when landing is impossible. The area of research was limited to Pocheon-si, Gyeonggi-do. The results were divided into two values; landing point of helicopter on mountains and dropping point. Digital map, forest type map and forest soil map were utilized as fundamental data. Factors of landing point were slope, topographical characteristics, vegetation characteristics and area of helicopter landing point by helicopter data. And, for dropping point, slope and vegetation characteristics were divided as factors and GIS intersect function was utilized for the analysis. But, this research was conducted by excluding factor values of wind direction, wind velocity, etc. In the future, it's necessary to improve effectiveness of the analysis more by making a connection with Meteorological Agency DB.

  • PDF

Site Prioritization for Artificial Recharge in Korea using GIS Mapping (지리정보시스템을 이용한 우리나라 인공함양 개발 유망지역 분석)

  • Seo, Jeong-A;Kim, Yong-Cheol;Kim, Jin-Sam;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.66-78
    • /
    • 2011
  • It is getting difficult to manage water resources in South Korea because more than half of annual precipitation is concentrated in the summer season and its intensity is increasing due to global warming and climate change. Artificial recharge schemes such as well recharge of surface water and roof-top rainwater harvesting can be a useful method to manage water resources in Korea. In this study, potential artificial recharge site is evaluated using geographic information system with hydrogeological and social factors. The hydrogeological factors include annual precipitation, geological classification based on geological map, specific capacity and depth to water level of national groundwater monitoring wells. These factors were selected to evaluate potential artificial recharge site because annual precipitation is closely related to source water availability for artificial recharge, geological features and specific capacity are related to injection capacity and depth to water is related to storage capacity of the subsurface medium. In addition to those hydrogeological factors, social aspect was taken into consideration by selecting the areas that is not serviced by national water works and have been suffered from drought. These factors are graded into five rates and integrated together in the GIS system resulting in spatial distribution of artificial recharge potential. Cheongsong, Yeongdeok in Gyeongsangbuk-do and Hadong in Gyeongsangnam-do, and Suncheon in Jeollanam-do were proven as favorable areas for applying artificial recharge schemes. Although the potential map for artificial recharge in South Korea developed in this study need to be improved by using other scientific factors such as evaporation and topographical features, and other social factors such as water-curtain cultivation area, hot spring resorts and industrial area where groundwater level is severely lowered, it can be used in a rough site-selection, preliminary and/or feasibility study for artificial recharge.

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

Analysis of Heterogeneous Tree-Ring Growths of Pinus densiflora with Various Topographical Characteristics in Mt. Worak Using GIS (GIS 기법을 이용한 지형적 특성에 따른 월악산 소나무 연륜생장의 이질성 규명)

  • 서정욱;김재수;박원규
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • To analyze the relationship between climatic factors (monthly temperatures and precipitations) and the radial growths or Pinus densiflora with different topographical settings in Worak National Park, Korea, 20 stands were chosen and 10 trees were selected from each stand. After crossdating, each ring-width series was double detrended (standardized) by fitting first a negative exponential or straight regression line and secondly a 60-year cubic spline. The growth patterns coud be categorized by four groups using cluster analysis. Cluster Ⅰ stand has north aspect, but others have south or southwest aspects. Cluster Ⅰ (one), cluster Ⅱ (ten), and cluster Ⅲ (two) stands are located in lower. elevation (305∼580 m), however, cluster Ⅳ (seven) stands are located in higher elevation, mostly in 560~870 m. Cluster Ⅱ and Ⅲ stands are located at similar elevation with the same aspect, however, cluster Ⅱ stands are located on more rocky and stiff slope with shallow soil depth. The response functions were used to examine the difference in the relationships between climatic factors and tree growths among the 4 cluster chronologies. The climatic factors are not limiting the growth in the cluster Ⅰ stand as highly as in other cluster plots because of rather mesic conditions in the north slope. The precipitation in the spring appears to be the main limiting factor in the cluster Ⅱ stands. The topographical characteristics of the sites of cluster Ⅱ, shallow soil depths on the rocky slope in the south aspect at lower elevation, may enhance the sensitivity of growth to moisture stress. In cluster Ⅲ and cluster Ⅳ, winter and spring temperature prior to the growth become more important than for cluster Ⅱ. This pattern is com-mon for Pinus densiflora trees growing in higher. elevation (equation omitted 800 m) in South Korea. It nay be re-lated with preconditioning effects of temperature as the temperature decreases with increasing elevation (cluster Ⅳ) or in the valley (cluster Ⅲ). The results obtained by tree-ring analysis were digitalized by GIS and spatio-temporal information on tree-ring data and topographic setting were analyzed and displayed simultaneously. The results of this study can be used to predict the future change of Pinus densiflora ecosystem to climate change expected in central Korea.

  • PDF

Study on Risk Assesment of Debris Flow using GIS (GIS를 이용한 토석류 위험성 평가에 관한 연구 (소규모 개발지역 중심으로))

  • Chang, In-Soo;Park, Eun-Young;Park, Ki-Bum;Kim, Sungwon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.225-234
    • /
    • 2013
  • The relationship between debris flow and topographical factors is essential for the reliable estimation of soil loss. The objective of this paper is to estimate stability index and soil loss for assessing landsliding risk caused by debris flow. SIMAP and RUSLE are used to estimate stability index and soil loss, respectively. The landsliding risk area estimated by using SIMAP is found to be different from the large land area estimated by RUSLE. It is found that the spatial distribution of soil cover significantly influences landsliding risk area. Results also indicate that stability index and soil loss, estimated by soil cover factor, improve the assessment of landsliding risk.

Development of a GIS Application Model for Evaluating Forest Functions (산림기능평가를 위한 GIS 응용모델의 개발)

  • Kim, Hyung-Ho;Chong, Se-Kyung;Chung, Joo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • This paper aims to develop a GIS(Geographic Information System) application model as a decision-making support system in order to evaluate the potential of forests according to their functions, or to classify forest functions. The forest functions analyzed in this study are as follows: production of timber, stable supply of water resources, forest hazards prevention, recreation in forests, conservation of living conditions and natural environment. Using a model possible to evaluate the potential of each forest function and to assort forest functions by making priority-based decisions according to the functions, as well as allowing for various possible analysis environments, its application has been reviewed. Factors for assessing the forest functions could be built by using the following three categories: four maps-topographical map, vegetation map, forest site map and basic forest land use map-whose quantitative drawings had already been made; other self-established maps, such as one indicating the location of sawmills, location map of expressway interchanges, and spatial data of national population distribution map; and attribute data of population and precipitation. The GIS application developed here contributes to the evaluation of forest functions in all the subject areas by map units and national forest management districts based upon the assessment system.

  • PDF