• Title/Summary/Keyword: GIMP

Search Result 6, Processing Time 0.025 seconds

A study of Accuracy Assessment of Digital Elevation Model in the Greenland (그린란드 수치표고모델의 수직정확도 검증에 관한 연구)

  • Park, Ho Joon;Choi, Yun Soo;Kim, Jae Myeong
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.59-65
    • /
    • 2014
  • Recently, increasing demand for 'Digital Elevation Model(DEM)' to climate change research and various development by global warming in the Arctic region. So we need to verify the accuracy to utilize DEM. In this research, we verified 'ASTER GDEM' and 'GIMP DEM' in several DEM which constructed in the Greenland that most of the area is covered ice sheet. We divided greenland into two part, ice sheet area and non ice sheet area by using the ESA globcover. Then, comparing a difference between 'ASTER DEM', 'GIMP DEM' and ICESat elevation data to verify the accuracy. As a result, GIMP DEM has higher accuracy in ice sheet area and ASTER GDEM has higher accuracy in non-ice sheet area.

3-D seismic data processing system for underground investigation (지반 조사를 위한 3차원 탄성파 자료처리시스템)

  • Sheen Dong-Hoon;Ji Jun;Lee Doo Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.147-157
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for underground investigation and this system is developed in PC based on Linux for lower-cost system. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing The system which is constructed by using these data processing modules Is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

Empirical Risk Assessment in Major Graphical Design Software Systems

  • Joh, HyunChul;Lee, JooYoung
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.259-266
    • /
    • 2021
  • Security vulnerabilities have been reported in major design software systems such as Adobe Photoshop and Illustrator, which are recognized as de facto standard design tools in most of the design industries. Companies need to evaluate and manage their risk levels posed by those vulnerabilities, so that they could mitigate the potential security bridges in advance. In general, security vulnerabilities are discovered throughout their life cycles repeatedly if software systems are continually used. Hence, in this study, we empirically analyze risk levels for the three major graphical design software systems, namely Photoshop, Illustrator and GIMP with respect to a software vulnerability discovery model. The analysis reveals that the Alhazmi-Malaiya Logistic model tends to describe the vulnerability discovery patterns significantly. This indicates that the vulnerability discovery model makes it possible to predict vulnerability discovery in advance for the software systems. Also, we found that none of the examined vulnerabilities requires even a single authentication step for successful attacks, which suggests that adding an authentication process in software systems dramatically reduce the probability of exploitations. The analysis also discloses that, for all the three software systems, the predictions with evenly distributed and daily based datasets perform better than the estimations with the datasets of vulnerability reporting dates only. The observed outcome from the analysis allows software development managers to prepare proactively for a hostile environment by deploying necessary resources before the expected time of vulnerability discovery. In addition, it can periodically remind designers who use the software systems to be aware of security risk, related to their digital work environments.

3-D seismic data processing system for underground investigation (지하 구조 영상화를 위한 3차원 탄성파 자료처리시스템 개발)

  • Sheen, Dong-Hoon;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.585-592
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for subsurface structure imaging and this system is developed in PC based on Linux for lower-cost computer. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing. The system which is constructed by using these data processing modules is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

Development of Multi-platform 3D Interactive Rural Landscape Simulator with Low-cost Web GIS and Game Engine (무료 Web GIS와 보급형 게임엔진을 이용한 다중플랫폼 3차원 인터랙티브 농촌경관 시뮬레이터 개발)

  • Lee, Sungyong;Kim, Taegon;Lee, Jimin;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.177-189
    • /
    • 2013
  • 3D modeling and rendering technologies are getting more attention from landscape planners and architects because the virtual reality based on 3D graphic technology could give more realistic experience to landscape simulation users and boost promotional effects. The 3D landscape simulation, however, not only requires a lot of cost and time in production, but also demands efforts to distribute to consumers due to various computing environment of them. The purpose of this study is to suggest a process for developing an interactive 3D landscape simulator with low-cost, which can support multi-platform functionality in high quality through reviewing related current software and web services. We select GIMP for 2D image texturing, SketchUpfor 3D modeling, Unity for real-time rendering, and Google Earth for terrain modeling considering price and workability and apply the developed process for Windows, Web, and Android versions to test the applicability for Sangji-ri, Gosam-myeon, Gyeonggi-do, Korea.

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.