• Title/Summary/Keyword: GHP(gas engine driven heat pump)

Search Result 24, Processing Time 0.021 seconds

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.

Dynamics Modeling of a Gas Engine-Driven Heat Pump in Cooling Mode

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Jang Cheol-Yong;Cho Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.278-285
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for design of control algorithm. The dynamics modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fans, coolant three-way valves and liquid injection valves were PI or P controlled. The simulation results were found to be realistic enough to apply for control algorithm design. The model can be applied to build a virtual real-time GHP system so that it interfaces with a real controller in purpose of prototyping control algorithm.

Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump (가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

Dynamics modeling of a GHP in cooling mode for development of control algorithm (제어 알고리즘 개발을 위한 GHP 냉방모드 동특성 모델링)

  • Shin Younggy;Kim Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump(GHP) for design of control algorithm. The dynamic modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fan, coolant three-way valves and liquid injection valve were PI or P controlled. The simulation results showed physical behavior that is realistic enough to apply for control algorithm design.

Benefit-Cost Analysis in Accordance with Replacement of Electrical Cooling System by Gas Cooling System using the California Standard Test (캘리포니아 표준테스트 방법을 사용한 전기냉방기기의 가스냉방기기 대체에 따른 편익비용분석)

  • Park, Rae-Jun;Song, Kyung-Bin;Won, Jong-Ryul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1774-1781
    • /
    • 2012
  • There are some efforts to improve the performance of electrical heat pump(EHP) and replace it with an alternative cooling equipment such as gas engine-driven heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. This paper analyzes cost-benefit in accordance with replacement of electrical cooling system by gas cooling system using california standard test and sensitivity analysis of some scenarios.

The Economic Effects and Operating Characteristics of the Outdoor Unit in Accordance with Zoning Plan of Gas Engine Driven Heat Pump Installed in the University Building (대학 건물에 설치된 가스엔진구동 히트펌프(GHP) 실외기의 조닝 계획에 따른 운전 특성과 경제적 효과)

  • Park, Kang-Hyun;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 2012
  • The purpose of this study is to analyze of the operating characteristics of the Gas engine driven Heat Pump(GHP) and to reduce maintenance costs through the most Economical plan. As the zoning modifications that have economic effects were confirmed. Applications should be made with a similar purpose of the space. The combination of a modified space has led to reduced operating hours of the outdoor unit. The reduction of the outdoor unit operating hours, reducing maintenance costs accordingly. When analyzed at six years have elapsed, the amount of savings through zoning modifications is more than an additional construction cost. During the design phase, cost-effective operation of the GHP is required for the proper zoning plan.

Performance and Emission Characteristics of GHP Engine at Different Natural Gas Heating Value (천연가스 열량 변화에 따른 GHP 엔진의 성능 및 배출가스 특성)

  • Lee, Joongseong;You, Hyunseok;Choi, Jeonghwan;Choi, Euikwang;Lee, Kyungho;Lee, Byungdae
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In general, natural gas is used as GHP(Gas Engine Driven Heat Pump) fuel. On this study, the influences of different natural gas heating value on GHP were evaluated. As a result of engine test & field test using low heating value gas($9,800kcal/Nm^3$) as fuel, the engine power was reduced slightly, however the performance of start-up, the stability of operation and the characteristics of emission gas were almost similar. So it is considered that the normal operation of GHP is possible without any tuning when the low heating value($9,800kcal/Nm^3$) of natural gas was used as fuel.

Analysis of Energy Consumption & Environmental Load of Electric Heat Pump and Gas Engine Driven Heat Pump (전기구동 히트펌프(EHP)와 가스엔진구동 히트펌프(GHP)의 에너지소비량 및 환경부하 분석)

  • Kim, Sang-Hun;Lim, Sang-Cae;Chung, Kwang-Seop;Kim, Young-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.933-937
    • /
    • 2006
  • Energy is motive power that makes convenient society. But, our country's energy is depending on most import. Also, energy and environmental issue are important problem in community of nations. The purpose of this study is to analysis the energy consumption and environmental load of EHP and GHP in Medium and small-scaled office building. The annual energy consumption used to cooling and heating by EHP was 10 percent more than GHP. And annual energy cost of EHP was 33 percent more expensive than GHP. But, Compared to the annual $CO_2$ emission, EHP was 6 percent less than GHP. Therefore, equipment selection should be consider environmental load as well as energy consumption and cost.

  • PDF

Analysis of the Operation Conditions and Energy Consumption for Each Energy Source (에너지원별 냉방기기 에너지 소비 및 운영현황 분석)

  • Kang, Yong-Tae;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.195-200
    • /
    • 2009
  • The objectives of this study are to analyze of energy consumption and operation conditions of each cooling system for gas and electric driven systems, and to compare operating cost for five different cooling systems; ice storage system, system air-condition, turbo chiller as the electric driven cooling systems, and absorption chiller and Gas driven Heat Pump (GHP) as the gas driven cooling systems. The sample designs are carried out based on the types of business, capacity, installation region and year.

  • PDF

A Study on the development of Gas Engine Controller for Gas Heat Pump (Gas Heat Pump 구동을 위한 가스 엔진 제어기의 개발)

  • 이중현;고국원;고경철;김종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.618-621
    • /
    • 2004
  • Compressors in Large Multi-room air conditioning system are often driven by gas heat pumps. The advantages of GHP are their high level of heating performance and low cost because they use the LNG fuel to drive engine. We developed engine control system. The developed system controls engine speed based on proportional, integral and derivative (PID) method. This controller is designed to eliminate the need for continuous operator attention on engine revolution control. The control system includes 4 spark coil drivers, fuel drivers and relay drivers to make engine's operating more stable. The experiments of control engine revolution of this system are based on the various load conditions.

  • PDF