• Title/Summary/Keyword: GHGs reduction

Search Result 52, Processing Time 0.022 seconds

Key Elements for Standardizing the Estimation of Greenhouse Gas Emissions Reduction Induced by Remanufactured Products (재제조품의 온실가스배출 저감효과 산정 표준화를 위한 핵심 요소 도출)

  • Nam Seok Kim;Kook Pyo Pae;Jae Hak No;Hong-Yoon Kang;Yong Woo Hwang
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.62-72
    • /
    • 2024
  • Although the Paris Agreement in 2015 aimed to limit global temperature increases to below 2℃ and eventually to 1.5℃ to address the climate crisis, global temperature continues to rise. Developed countries have proposed a circular economy as a major strategy to tackle this issue. Detailed implementation methods include reusing, remanufacturing, recycling, and energy recovery. Remanufacturing has a greater potential to achieve high added value and carbon neutrality than other resource circulation methods. However, currently, no standardized method for quantitatively evaluating the greenhouse gas (GHG) reduction effects of remanufacturing exists. This study compares and analyzes recent research trends since 2020 on the calculation of GHG emission reduction effects from remanufacturing. It also examines international standards for environmental impact assessment, including GHGs and environmental performance labeling systems. This study derives the key factors for standardizing the calculation of the GHG emission reduction effects of remanufactured products.

Analysis of Changing for GHG Emissions and Regional Characteristics on Rice Cultivation by IPCC Guideline Improvements (IPCC 온실가스 산정지침 변화에 따른 농촌지역 벼 재배부문 배출량 및 배출특성 분석)

  • Park, Jinseon;Jeong, Chanhoon;Jeong, Hyuncheol;Kim, Gunyeop;Lee, Jongsik;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • IPCC Guidelines have been updated after the first official announcement to get more precise estimation of GHG emissions. The goal of this study is to evaluate the implications of the IPCC Guidelines improvements including equations of country-specific parameter values for estimating GHG emissions for rice cultivation on the agricultural sector. In addition, we analyze the effects of emission factors associated with organic amendment applications. The results of this study are as follows; (1) the total GHG emissions of rice cultivation based on 1996 IPCC GL are 28% lower than those estimated by 2006 IPCC GL with the same year data; (2) GHGs can be reduced up to 60% through the assumption of organic fertilizer applications; (3) Jeonnam and Chungnam are the worst regions for GHG emissions on rice cultivation and Chungbuk shows the highest reduction rate of GHG emissions, about 40%.

A Study on the Formation and the Change of the CDM(Clean Development Mechanism) Industry in the Republic of Korea from the Change in Industrial Networks (한국 청정개발체제 네트워크 변화에 따른 산업 형성과 변화 연구)

  • Lee, Jin-Hyung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.486-502
    • /
    • 2017
  • This study investigated the formation process and networks of Korean Clean Development Mechanism(CDM) industry. It aimed to reveal the factors and the drivers for the formation processes of this industry in the specific place. Based on the analysis of the Project Design Documents(PDDs) of the CDM projects and the collected project data by international institutions, surveys, and interviews were done. On the basis of these data, the analysis on the industrial change as complex emergent effects by the network evolution caused by adaptive activity of firms is conducted. In the time of the genesis, a kind of serendipity that the industrial activities of Korean firms meet to new system, CDM, In the changing process of the Korean CDM industry, the role of policies fo Korean Government was important to promote the new and renewable energy projects of the power companies. In the time of restructuring, Korean government policies formed new initial conditions for the new domestic GHGs reduction industry. In this processes, the localization of knowledge acted as a key driver for the formation of the Korean CDM industry.

A Study on Carbon Incentive System Based on Investigation of Energy Consumption in Korean Universities (대학 캠퍼스의 에너지 소비 실태 조사를 통한 탄소 인센티브 제도 연구)

  • Kim, Kyung-Su;Shin, Moon-Su;Koo, Ja-Kon
    • Hwankyungkyoyuk
    • /
    • v.23 no.2
    • /
    • pp.65-81
    • /
    • 2010
  • Universities which have taken an important role to develop the human resources, became one of emitters of greenhouse gases, they need to find a way to reduce global warming gases through reduction of energy consumption. This study is intented to propose a solution that can reduce the greenhouse gases at universities located in Korea. To conduct this study, we have chosen a university at Wonju in Kangwon province for a case study and investigated the emissions of carbon dioxide from campus facilities and residential area. The data has become a footstone to estimate the assumed amount of carbon emission for top 23 energy consumption universities in Korea. We calculate the amount for carbon emission, not only for facilities in campus, but also for residential buildings, amount for emission is increased severely by showing $9780.94tCO_2$, which is 2.1 times more than average amount for emission of greenhouse gases researched in existing statistics. Universities have difficulty in introducing new energy generation system, as having been done business companies or other commercial facilities but they are required to introduce some educational methods since it is a academic space. Incentive to universities reducing carbon emission in campus is a system to provide incentives with students, professors, administrative personnels and others in campus as a compensation for their efforts to save energy. It is needed to establish the infrastructures for measuring energy consumption in campus.

  • PDF

A Study on Environment-Friendly Characteristics of campus buildings for creating a green campus (그린캠퍼스 조성을 위한 대학건물의 친환경적 특성에 관한 연구)

  • Jeong, Sook-In;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.221-228
    • /
    • 2009
  • Recently severity of ecological adaptation and climatic change due to global warming grows larger. According to the fourth report of IPCC in 2007, emission quantity of the earth greenhouse gas(GHGs) generated by activity of mankind increased with 80% since 1970. And it is forecasted that worldwide greenhouse gas will be increased with 25~90%(corresponding to $CO_2$) between 2000 and 2030. This increment of greenhouse gas($CO_2$) is expected to raise average temperature of the earth with the maximum $6.4^{\circ}C$, and sea surface with 59cm in 2090. Like this, destruction of environment by greenhouse gas is regarded as universal problem threatening the existence, not only the problem of one nation. Consequently, systematic correspondence to the global warming at the aspect of energy consumption is also needed in Korea. From the analysis result of 'Statistics of Energy Consumption' published by Green Korea in 2007, energy consumption increment of domestic universities was higher as many as 3.7 times than 22.5% of the whole energy consumption increment in our country. This says to be the direct example which shows that universities are huge sources of greenhouse gas emission. New constructing and enlarging buildings of each universities within campus are the most major reason for such a large increment of energy consumption in universities. The opinion that the possibility of causing energy waste and efficiency reduction is raised by increased buildings of universities has been propounded. That is, universities should make concrete goal and the plan for reducing emission of green house gas against climatic change, and should practice. Accordingly, there is the meaning that 2 aspects of environment-friendly design characteristics, that is application of energy utilizing technology, material usage of energy efficiency-side and environment-side, and introduction of natural element in the environmental aspect, were analyzed for facilities of university campus designed in environment-friendly point of view from initial stage of plan, and direction of environment-friendly design of university facilities in the future was groped in order to grasp environment-friendly design tendency of internal and external University facilities based on this analysis of this paper.

유기성 폐기물 간접부담금의 도입과 바이오가스 생산보조 정책의 일반균형효과 분석

  • Bae, Jeong-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.175-210
    • /
    • 2012
  • As London and post-Koyto protocols presumably affect emission of organic waste in Korea in 2012, appropriate treatment of organic waste becomes very important. Organic wastes are regarded as non-point pollutants. It has been criticized that direct emission charges on the emission of non-point pollutants are not effective due to the high uncertainty in the relationship between pollution sources and pollution levels. This study suggests indirect emission charges on production of livestocks or consumption on foods. Furthermore, it is assumed that revenue from the emission charges will be recycled to support biogas production. Biogas can be fueled to produce energy. In order to evaluate potential economic and environmental impacts of recycling the indirect emission charges on organic wastes, a static CGE model was developed. Simulation results of emission charges on the production of livestock show that livestock, agriculture, and food industry will confront relatively high burden while emission charges on consumption of food will affect more broadly and consumers will suffer more. Production charge on livestock sector will lead to higher reduction in GDP and total expenditure relative to the consumption charge. GHGs reduction effect was higher for the consumption charge relative to the production charge. Synthetically, consumption charge on food sector is more desirable as an alternative charge for the emission of organic wastes.

  • PDF

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Analysis of Economic and Environmental Effects of Remanufactured Furniture Through Case Studies (사례분석을 통한 사용 후 가구 재제조의 경제적·환경적 효과 분석)

  • Lee, Jong-Hyo;Kang, Hong-Yoon;Hwang, Yong Woo;Hwang, Hyeon-Jeong
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.67-76
    • /
    • 2022
  • The furniture industry has a high possibility to create value-added and a high potential to create new occupations due to the characteristics of the industry, which mainly consists of small and medium-sized enterprises (SMEs). However, the used furniture, which has sufficient reuse value, is also crushed and used as solid refuse fuel (SRF) recently. Besides, the number of waste treatment companies continues to decrease, and it occurs congestion of wood waste. As a way to solve the issue, a business model development of remanufacturing used furniture can be suggested as an alternative due to its high circular economic efficiency. Remanufacturing business including furniture industry creates positive effects in various aspects such as economic, environmental and job creation. In other words, remanufacturing is an effective recycling way to reduce input resources and energy in the production process. The results of economic analysis show that the expected annual revenue from the single worker furniture remanufacturing site was 104 million won which is 3.11 times more than the average income of a single-worker household in Korea and its B/C ratio was estimated about 30 which means high business feasibility. Revenue through furniture remanufacturing also showed 320 times higher than that of SRF production from the perspective of weight. In addition, it is shown that the GHGs reduction from the furniture remanufacturing is 2.2 ton CO2-eq. per year, which is similar to the amount of GHGs absorption effect of 937 pine trees or 622 Korean oak trees annually. Thus the results of this study demonstrate that it is important to adopt an appropriate recycling method considering the economic and environmental effects at the end-of-life stage.

A Study on the Estimation of the GHGs Emissions to the Reuse of De-ionized Water Production Process in Semiconductor Factory (반도체 생산용 초순수 제조공정의 농축수 재이용에 따른 온실가스 발생량 평가에 관한 연구)

  • Han, Jong-Min;Chung, Jin-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.518-525
    • /
    • 2018
  • In the 21st century, human beings are becoming increasingly concerned about greenhouse gas emissions as the environment changes due to climate change become serious. The temperature of Korea has risen by approximately $1.5^{\circ}C$ from 1904 to 2000, and the climate is changing gradually to a subtropical climate. As a result, the frequency of floods and droughts increases, so that the water available to humans is decreasing every year, and the cost of using city water is rising every year. The reuse of wastewater that is normally abandoned is inevitable. This study examined the monthly data for 6 months of operation by installing a reuse system of concentrated wastewater (Re R/O System) that is generated during the process of manufacturing de-ionized water (DI-Water System) used in semiconductor processing. As a result of the survey, the city water supply saved approximately $2,767m^3$ per month. The average annual greenhouse gas emissions was $1,329.07kg-CO_2$ per month due to the electricity consumption of the water reuse system. On the other hand, because of the reduction in city water supply, the average monthly average of $918.64kg-CO_2$ was reduced, and the greenhouse gas emissions were increased to $410.43kg-CO_2$ per month. If it improves some processes in the water reuse system, the amount of greenhouse gas emissions can be reduced by an average of $254.41kg-CO_2$ per month.