• Title/Summary/Keyword: GHG emissions

Search Result 382, Processing Time 0.028 seconds

In Pursuit of Low Carbon Cities: Understanding Limitations of ICLEI's International Local Government Greenhouse Gas Emissions Protocol (저탄소도시를 지향하며 -ICLEI 규약의 한계성 분석-)

  • Kim, Oh Seok
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.151-165
    • /
    • 2013
  • This article addresses potential errors in accounting greenhouse gas (GHG) emissions based on the International Council for Local Environmental Initiatives' (ICLEI's) International Local Government Greenhouse Gas Emissions Analysis Protocol (IEAP). The IEAP seems to provide practical guidelines for local governments so that they can measure their GHG emissions. The outcomes are immediately convertible for any national GHG inventory analysis when one is constructed based on the methodology drafted by Intergovernmental Panel on Climate Change. Further, it provides a societal foundation at the global level in order for local governments to collectively deal with 'double-counting' and 'allocation' problems. However, ICLEI's IEAP overlooks two major issues: (1) the protocol does not consider carbon dioxide emissions due to burning biological fuel as a type of GHG emission; and (2) it overlooks the possibility of indirect double-counting when producing emission factors at the local level. Thus, the limitations must be fixed so that the local governments can measure their GHG emissions more precisely, while the accurate GHG inventory will ultimately support reducing the local governments' emissions to mitigate anthropogenic climate change.

  • PDF

The Domestic Response Strategies for the Mutual Recognition Arrangement System to Greenhouse Gas (온실가스 국제상호인정 체계에 관한 국내대응방안)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • Climate change has been identified as one with the greatest challenges facing nations, government, business and over future decades. Activities to reduce greenhouse gas emissions by the Kyoto Protocol, the international community has been in progress. Korea also has introduced the Emission trading system to reduce greenhouse emission from the supervision of the government. Greenhouse gases emissions quantity should be internationally recognized. Mutual Recognition Arrangement should be recognized as the same greenhouse gas emission. International recognition of domestic verification body of international mutual recognition is required. Efforts are needed to secure the equivalence between the emission rights through direct cooperation with the relative nation accreditation body. Early entry into the IAF/PAC GHG MLA is essential for demonstrating equivalence between greenhouse gas emissions. Emissions trading will also require connection to the EU ETS, California, USA, and Tokyo, Japan to link Emissions trading. In the case of establishing accreditation standards and accreditation criteria, it will be necessary to distinguish between the domestic Energy Target Management System and the Emission Trading System. Independent greenhouse gases verification bodies should be established to meet the requirements of IAF and PAC. It is necessary to revise the qualification criteria for the verification of the greenhouse gas verification body according to international standards requirements. It is necessary to support the role of accreditation bodies of domestic greenhouse gas verification bodies. It is required to join international organizations of international mutual recognition of international trade and the need for pilot projects to link greenhouse gas emissions. The core link to our emission trading system is called EU-ETS, and we will need to join the IAF/PAC GHG MLA GHG. The International Mutual Recognition Agreement (IAF) is expected to allow international interoperability of GHG emissions verification between EA and the PAC. By signing a PAC GHG MLA, it will need to be prepared to prepare for the pilot project to link the emission trading system.

Estimation of Greenhouse Gas Emissions and Environmental Assessment of Dye Wastewater Treatment Process (염색폐수 처리공정의 온실가스 배출량 산정 및 환경성 평가)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1881-1888
    • /
    • 2014
  • Greenhouse gas (GHG) emissions from dye wastewater treatment processes were estimated by analysing their mass and energy balances, which were then used as baseline information for environmental assessment. The total GHG emissions from dye wastewater treatment plants were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The amounts of $CO_2$, $CH_4$ and $N_2O$ emissions were calculated according to the Intergovernmental Panel on Clime Change (IPCC) guideline for the GHG target management system. For 3 years between 2011 and 2013, direct and indirect emissions were on average 8,742.7 and 7,892.0 Ton.$CO_2eq/year$, respectively, with the former exhibiting 52.6 %. Also, compared to 2012, in 2013, the eco-efficiency indicator by the GHG emissions was found to be more than 1, suggesting that environmental quality was effectively improved.

Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014)

  • Boontiam, Waewaree;Shin, Yongjin;Choi, Hong Lim;Kumari, Priyanka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1805-1811
    • /
    • 2016
  • The goal of this study was to estimate the emissions of greenhouse gases (GHG), namely methane ($CH_4$), nitrous oxide ($N_2O$), and carbon dioxide ($CO_2$) from poultry and pig production in South Korea over the last 10 years (2005 through 2014). The calculations of GHG emissions were based on Intergovernmental Panel on Climate Change (IPCC) guidelines. Over the study period, the $CH_4$ emission from manure management decreased in layer chickens, nursery to finishing pigs and gestating to lactating sows, but there was a gradual increase in $CH_4$ emission from broiler chickens and male breeding pigs. Both sows and nursery to finishing pigs were associated with greater emissions from enteric fermentation than the boars, especially in 2009. Layer chickens produced lower direct and indirect $N_2O$ emissions from 2009 to 2014, whereas the average direct and indirect $N_2O$ emissions from manure management for broiler chickens were 12.48 and $4.93Gg\;CO_2-eq/yr$, respectively. Annual direct and indirect $N_2O$ emissions for broiler chickens tended to decrease in 2014. Average $CO_2$ emission from direct on-farm energy uses for broiler and layer chickens were 46.62 and $136.56Gg\;CO_2-eq/yr$, respectively. For pig sectors, the $N_2O$ emission from direct and indirect sources gradually increased, but they decreased for breeding pigs. Carbon dioxide emission from direct on-farm energy uses reached a maximum of $53.93Gg\;CO_2-eq/yr$ in 2009, but this total gradually declined in 2010 and 2011. For boars, the greatest $CO_2$ emission occurred in 2012 and was $9.44Gg\;CO_2-eq/yr$. Indirect $N_2O$ emission was the largest component of GHG emissions in broilers. In layer chickens, the largest contributing factor to GHG emissions was $CO_2$ from direct on-farm energy uses. For pig production, the largest component of GHG emissions was $CH_4$ from manure management, followed by $CO_2$ emission from direct on-farm energy use and $CH_4$ enteric fermentation emission, which accounted for 8.47, 2.85, and $2.82Gg-CO_2/yr$, respectively. The greatest GHG emission intensity occurred in female breeding sows relative to boars. Overall, it is an important issue for the poultry and pig industry of South Korea to reduce GHG emissions with the effective approaches for the sustainability of agricultural practices.

Maglev, Petroleum Demand, and Global Warming

  • Rote, Donald M.
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • According to the Intergovernmental Panel on Climate Change, combustion of petroleum-based and other fossil fuels results in the increasing atmospheric concentrations of $CO_2$ and other greenhouse gases (GHG's) and is a major contributing factor to global warming. This paper includes estimates of the energy and petroleum use and the GHG emissions caused by the transportation sector. It then examines the extent to which diversions to alternative modes may be possible. Estimates are made of the potential reductions in energy and petroleum use and GHG emissions resulting from diversions from conventional modes, to both low-speed urban and high-speed intercity maglev vehicle trips based on "well-to-wheel" (i.e. total-fuel-cycle) calculations.

A Study on the Establishment of Greenhouse Gas Inventory in Korean Railroad (국내 철도분야의 온실가스 인벤토리 구축에 관한 연구)

  • Lee, Jae-Young;Jung, Woo-Sung;Cho, Young-Min;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1371-1373
    • /
    • 2008
  • Recently, the reduction of greenhouse gas (GHG) is the most important international issue. In order to control efficiently GHG emissions and reduction, it is essential to establish GHG inventory preferentially. The aim of this study was to establish the GHG inventory of Korean railroad. The GHG sources were divided into direct and indirect emissions. The GHG released from the operation of rolling stocks was classified according to operating line and the kind of car. Finally, the GHG emission of Korean railroad can be managed systematically using this GHG inventory.

  • PDF

Estimation of Greenhouse Gas Emissions (GHG) Inventory and Reduction Plans for Low Carbon Green Campus in Daegu University (저탄소 그린캠퍼스 조성을 위한 온실가스 인벤토리 구축 및 감축잠재량 분석 - 대구대학교를 중심으로)

  • Jeong, YeongJin;Li, KaiChao;Kim, TaeOh;Hwang, InJo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.506-513
    • /
    • 2014
  • The objective of this study is to establish the greenhouse gases (GHG) inventories and estimate the GHG reduction plans for Daegu University from 2009 to 2011. The annual average of GHG emissions in Daegu University was estimated to be 19,413 ton $CO_2$ eq during the study period. Emissions of electricity usage in Scope 2 most contributed about 55.4% of the total GHG emissions. Also, GHG emissions of Scope 2, Scope 1, and Scope 3 contributed 60.4%, 22.6%, and 17.0%, respectively. In order to estimate reduction potential of GHG, the Long-range Energy Alternatives Planning (LEAP) model was calculated using three scenarios such as sensor installation, LED replacement, and solar facility. The GHG will be reduced by 1,656 ton $CO_2$ eq for LED scenario, by 1,041 ton $CO_2$ eq for sensor scenario, and by 737 ton $CO_2$ eq for solar scenario compared to 2020 business as usual (BAU). Therefore, the total GHG emissions in 2020 apply three scenarios can be reduced by 15% compared with 2020 BAU.

Simulation of greenhouse gas emissions of small ships considering operating conditions for environmental performance evaluation

  • Jeong, Sookhyun;Woo, Jong Hun;Oh, Daekyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.636-643
    • /
    • 2020
  • This study developed a method for simulating greenhouse gas (GHG) emissions considering changes in conditions that may occur during the actual operation of small ships. Additionally, we analyzed and compared the results of the proposed method with that of existing emission simulations according to life-cycle assessment (LCA), thus verifying the proposed method's effectiveness. Through the results of the study, we confirmed that the proposed method improves the simulation by considering emissions due to ship operation, whereas existing methods focus on emissions caused by raw material production. Additionally, the proposed method could identify and quantify the relationship between changes in operating conditions and GHG emissions. We expect this GHG emissions simulation technique to help improve the environmental performance of ships in the future.

Estimation of greenhouse gas emissions: An alternative approach to waste management for reducing the environmental impacts in Myanmar

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.618-629
    • /
    • 2019
  • Along with growing population and economic development, increasing waste generation rates in developing countries have become a major issue related to the negative impacts of waste management on the environment. Currently, the business-as-usual waste management practices in Myanmar are largely affecting the environment and public health. Therefore, this study developed an alternative approach to waste management for reducing the environmental impacts in Myanmar by highlighting the greenhouse gas (GHG) emissions from business-as-usual practices and three proposed scenarios during 2018-2025. The calculation methods of the Intergovernmental Panel on Climate Change and Institute for Global Environmental Strategies were used for estimating the GHG emissions from waste management. It was estimated that the current waste management sector generated approximately 2,000 gigagrams of CO2-eq per year in 2018, trending around 3,350 Gg of CO2-eq per year in 2025. It was also observed that out of the proposed scenarios, Scenario-2 significantly minimized the environmental impacts, with the lowest GHG emissions and highest waste resource recovery. Moreover, the GHG emissions from business-as-usual practices could be reduced by 50% by this scenario during 2018-2025. The target of the similar scenario could be achieved if the local government could efficiently implement waste management in the future.

An Estimation of Greenhouse Gases (GHGs) Emissions from Energy Sector in Changwon City and Scenario Analysis Based on the Application of Carbon Neutral by 2050 in Korea (2050 탄소중립 시나리오를 적용한 창원시 에너지부문 온실가스 배출산정 및 시나리오 분석 )

  • Ha-Neul Kim;Jae-Hyung Jung
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.