• Title/Summary/Keyword: GGI interface

Search Result 3, Processing Time 0.018 seconds

Steady-state Capabilities for Hydroturbines with OpenFOAM

  • Page, Maryse;Beaudoin, Martin;Giroux, Anne-Marie
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.161-171
    • /
    • 2011
  • The availability of a high quality open source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Qu$\'{e}$bec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. This paper describes the developments that have been made to implement new turbomachinery related capabilities: multiple frames of reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis turbine.

Development of Numerical Tank Using Open Source Libraries and Its Application (오픈 소스 라이브러리를 이용한 수치수조 구현 및 적용)

  • Park, Sunho;Rhee, Shin Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.746-751
    • /
    • 2014
  • In this paper, ship performance prediction solver was developed using open source computational fluid dynamics (CFD) libraries. The mass- and momentum-conservation equations and turbulent model with a wall function for the turbulent closer were considered. The volume fraction transport equation with a high-resolution interface capturing scheme were selected for free-surface simulation. The predicted wave pattern around KRISO container ship (KCS) using developed program showed good agreement against existing experimental data. For the revolution of a propeller in the propulsive test, general grid interface (GGI) library was used. The predicted propulsive performance showed 7 % difference against experimental data. Two-phase mixture model was developed to simulate a cavitation and applied to a propeller. The sheet cavitation on the propeller was predicted well. From results, the potential of the numerical tank developed by open source libraries was verified by applying it to KCS.

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.