• Title/Summary/Keyword: GGH Panel Element

Search Result 3, Processing Time 0.014 seconds

Fluid Analysis of GGH Panel Elements considering Deposition Particles for Desulfurizing Equipments (침적 입자를 고려한 탈황설비용 GGH 판넬 요소의 유동해석)

  • Ryu, B.J.;Kim, J.H.;Kim, H.S.;Lee, K.S.;Koo, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.601-605
    • /
    • 2009
  • The paper deals with the proper design of GGH(gas-gas heater) panel elements of desulfurization equipments in a thermoelectric power plant. When fossil fuels such as coal, petroleum et cetera are burnt to ashes, sulfur oxide compounds are produced, and calcareous sludges are deposited at GGH panel elements. In this case, operation of a power plant equipments is interrupted, and a tremendous economic loss comes into existence. One of the purposes of the paper is to find flow velocity distributions and regions of depositions when calcareous sludges pile up on the GGH panel elements through the fluid analysis. In the fluid analysis, flow velocity and position distributions of particles between GGH panel elements are demonstrated according to time variation for ammonia and calcium hydroxide particles.

  • PDF

Optimization of the Gas-Gas Heater Element for Desulfurization Equipment through Fluid Analysis of considering Deposition Particles (침적 입자를 고려한 유동해석을 통한 신형 탈황설비용 GGH 요소 최적화)

  • Oh, B.J.;Ryu, B.J.;Lee, Y.S.;Kim, J.H.;Baek, S.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.611-619
    • /
    • 2010
  • The paper deals with the proper design of GGH(gas-gas heater) panel elements of desulfurization equipments in a thermoelectric power plant. When fossil fuels such as coal, petroleum et cetera are burnt to ashes, sulfur oxide compounds are produced, and calcareous sludges are deposited at GGH panel elements. In this case, operation of a power plant equipments is interrupted, and a tremendous economic loss comes into existence. One of the purposes of the paper is to find flow velocity distributions and regions of depositions when calcareous sludges pile up on the GGH panel elements through the fluid analysis. In the fluid analysis, flow velocity and position distributions of particles between GGH panel elements are demonstrated according to time variation for ammonia and calcium hydroxide particles.

Optimization of the Gas Gas Heater Element for Desulfurization Equipment through Flow Analysis (유동해석을 통한 신형 탈황설비용 GGH 요소 최적화)

  • Ryu, B.J.;Oh, B.J.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.599-602
    • /
    • 2008
  • This paper deals with the optimization of Gas-Gas-Heater elements for desulfurization equipment through flow analysis. The flow analysis model used in the paper is ${\kappa}-{\varepsilon}$ turbulent flow model. Temperature and flow velocity distributions for three types of panel elements are calculated. Through the analysis the following conclusions are obtained. Firstly, pressure differences of between inlet and outlet for three types of panel elements do not exceed in the standard pressure difference. Secondly, it is expected that NU-type panel element having wide area of heat transfer will be more effective in the aspect of the heat transfer.

  • PDF