• Title/Summary/Keyword: GFRP composite

Search Result 322, Processing Time 0.065 seconds

A Study on the Machining Characteristics in GFRP Using HSS Tools (고속도공구강을 이용한 GFRP 가공특성에 관한 연구)

  • Park, Jong-Nam;Jeong, Seong-Taek;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.37-44
    • /
    • 2003
  • Composite materials are widely used to make all kinds of machine parts, internal and structural materials of cars, aerospace industries, building structures, ship materials, sporting goods and others. It is worth the while to use composite materials as various substitutions when compared With others. But the use is limited in the field of the mechanical processing because of its difficulties in cutting. The surface roughness of in and out in the hole processing was discussed after cutting the GFRP with HSS drill in the vertical machining center. And it is observed that as it processed more, the powdered chip may be got more than the fluid type long chip.

  • PDF

Experimental Study on Durability Performance of GFRP Composite for Alkali Solution (충진제 종류에 따른 GFRP 복합체의 내알카리성 실험)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyeang-Yeal;Moon, Chang-Kwon;Lee, Seong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.585-588
    • /
    • 2006
  • This paper presents experimental results for durability performance of GFRP composite exposed to the $80^{\circ}C$ alkali solution. A total of 280 specimens for 4 types of additive and 7 cases of immersion time were prepared and tested. Additives used in this study were PVA, kaolin clay, and alumina powder. Specimens were immerged up to 30 days and tested for tensile strength for each immersion time. The results indicate that it is important to fill the inner space of GFRP composite densely to avoid the decrease of tensile strength. In this study, PVA additive showed better performance than other additives.

  • PDF

Experiments on Local Behavior of GFRP Composite Deck for Pedestrian Bridges (보도교용 복합소재 바닥판의 국부거동시험)

  • Na, Doo-Hoon;Hong, Kee-Jeung;Lee, Sung-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.84-89
    • /
    • 2008
  • Glass fiber reinforced composite decks have high-strength, light-weight and high durability. The composite decks having vertical snap-fit connections are designed for pedestrian bridges and their structural behavior are studied. Especially in this paper, local behavior of the developed composite deck for pedestrian bridge is verified by both analysis and experiment.

  • PDF

Flexure-Compression Characteristics of GFRP Composite Pile (콘크리트 합성 GFRP 복합소재 파일의 휨-압축특성)

  • 이성우;손기훈;조남훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.127-134
    • /
    • 2001
  • In this paper flexure-compression characteristics of concrete filled glass fiber reinforced composite pile was studied. Confinement model of composite pile was derived from experimental data. Also numerical method to find P-M diagram of composite pile was developed. The flexure-compression test results were compared with analytical P-M diagram and it is demonstrated that they agree well each other. Utilizing these results, pilot composite pile was designed and fabricated.

  • PDF

A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method (필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2009
  • In this paper, quasi-static crushing tests of composite circular tubes under axial compression load are conducted to investigate the energy absorption characteristics. Circular tubes used for this experiment are glass/epoxy (GFRP) composite tubes which are fabricated by the filament winding method. One edge of the composite tube is chamfered to reduce the initial peak load and to prevent catastrophic failure during crushing process. Energy absorption characteristics vary significantly according to the constituent materials, fabrication conditions, tube geometry and test condition. In tube geometry, according as inner diameter increase, unstable crush mode is caused by local buckling of delamination, but control of the fiber orientation should help composite tubes get stable crush mode.

Durability Characteristics of Glass Fiber Reinforced Polymer Composite Clapping Plates for Application of Rubber Dam (고무댐에 적용하기 위한 유리섬유보강 복합재료 클랩핑 플레이트의 내구 특성)

  • Lee, Jeong-Woo;Park, Chan-Gi;Kim, Jong-Ok;Lee, Seung-Kee;Kim, Pil-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.17-23
    • /
    • 2011
  • Steel clapping plate is used to connecting rubber body in rubber dam. However, once the steel clapping plate corrodes, it may cause faults, such as the same problems experienced by typical reinforcing steel. This study evaluated the applicability of glass fiber reinforced polymer composite(GFRP) clapping plate as a substitute for steel clapping plate. Absorption and load test were conducted to evaluate the decrease in durability of GFRP clapping plate exposed to deterioration environments. In the durability test results, the absorption rate of GFRP clapping plate was appeared as 0.6~1.0% in 50 day of immersion time. Also, the fracture load decreased with accelerated degradation environment exposure. Moreover, the absorption rate in GFRP clapping plate increased as degradation progressed, reducing the fracture load.

Effect of hygrothermal aging on GFRP composites in marine environment

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • In the present work, the effect of hygrothermal aging on the glass fibre and epoxy matrix interface has been investigated by destructive and non-destructive techniques. The glass fiber reinforced polymer (GFRP) composite laminates were prepared using Vacuum Assisted Resin Infusion Molding (VARIM) technique and the specimens were immersed in simulated seawater, followed by quantitative measurement. Besides this, the tensile tests of GFRP specimens revealed a general decrease in the properties with increasing aging time. Also, exposed specimens were characterized by a non-destructive ultrasonic guided Lamb wave propagation technique. The experimental results demonstrate a correlation between the drop in ultrasonic voltage amplitude and fall in tensile strength with increasing time of immersion. Hence, the comparison of the transmitted guided wave signal of healthy vis-a-vis specimens subjected to different extents of hygrothermal aging facilitated performance evaluation of GFRP composites.

The Suggestion of Testing Method for Analysis of Tensile Strength of Multi-Directional GFRP Plate (다방향 GFRP 플레이트의 인장강도 분석을 위한 시험 방법 제안에 관한 연구)

  • Sim, Jong-Sung;Kwon, Hyuck-Woo;Lee, Hyoung-Ho;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.799-808
    • /
    • 2011
  • In this study, a standardized test method to analyze tensile properties of multi-directional GFRP plate was proposed. Presently, tensile strength test of FRP composite reinforced with isotropic and orthotropic fiber is standardized according to ISO standard. Also, even though many studies were performed on test method to analyze the dynamic properties, the properties of tensile strength for multi-directional GFRP plate were not clearly identified. Currently, the domestic test method in accordance with ASTM, which is applicable to unidirectional FRP plate, gave tensile test results greater than actual properties. Thus, in this study, GFRP tensile test was conducted using the method found to be commonly applicable to all standards based on literature review of domestic and international references. Then, anchorage length experiments were performed using the proposed tension test method to evaluate validity of the method. Finally, optimal anchorage length was estimated from the numerical analysis to propose the standardized tensile strength method for GFRP multi-directional composite evaluation.

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.

Static and dynamic responses of Halgavor Footbridge using steel and FRP materials

  • Gunaydin, M.;Adanur, S.;Altunisik, A.C.;Sevim, B.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.51-69
    • /
    • 2015
  • In recent years, the use of fiber reinforced polymer composites has increased because of their unique features. They have been used widely in the aircraft and space industries, medical and sporting goods and automotive industries. Thanks to their beneficial and various advantages over traditional materials such as high strength, high rigidity, low weight, corrosion resistance, low maintenance cost, aesthetic appearance and easy demountable or moveable construction. In this paper, it is aimed to determine and compare the geometrically nonlinear static and dynamic analysis results of footbridges using steel and glass fiber reinforced polymer composite (GFRP) materials. For this purpose, Halgavor suspension footbridge is selected as numerical examples. The analyses are performed using three identical footbridges, first constructed from steel, second built only with GFRP material and third made of steel- GFRP material, under static and dynamic loadings using finite element method. In the finite element modeling and analyses, SAP2000 program is used. Geometric nonlinearities are taken into consideration in the analysis using P-Delta criterion. The numerical results have indicated that the responses of the three bridges are different and that the response values obtained for the GFRP composite bridge are quite less compared to the steel bridge. It is understood that GFRP material is more useful than the steel for the footbridges.