• Title/Summary/Keyword: GFRP composite

Search Result 322, Processing Time 0.026 seconds

The Cutting Characteristics of the GFRP by Processing methods (가공방법에 따른 GFRP의 절삭특성)

  • 박종남;정성택;이승철;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1764-1767
    • /
    • 2003
  • It is widely used in composite materials like several mechanical parts. aerospace industries. internal and structural materials of cars, building structures. ship materials and sporting goods. but it is insufficient to apply in field of mechanical processing. Therefore. GFRP which is possible to use in industrial field was examined about cutting force. tool wear condition of cutting, chip shape. surface roughness and inlet or outlet shape of processing parts with changing cutting condition and using HSS drill which is in vertical machining center in this paper.

  • PDF

Frequency Spectrum and re Correlation with Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Plastics (GFRP의 2차원 절삭에서 주파수 스펙트럼과 절삭메카니즘과의 상호연관성에 관한 연구)

  • Gi-Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study discusses frequency analysis based on the frequency spectrum and process characterization in orthogonal cutting of Fiber-matrix composite materials. A sparsely distributed idealized composite material, namely a glass reinforced polyester(GFRP) was used as workpiece The present method employs a force sensor and the signals from the sensor are processed using the fast Fourier transform(FFT) technique. The experimental correlations between the different chip formation mechanisms and power spectrum me established. Effects of fiber orientation, cutting parameters and tool geometry on the cutting mechanisms me also discussed.

  • PDF

Flexure-Compression Characteristics of Composite Marine Pile (복합소재 해상파일 모델의 휨압축 거동특성)

  • 이성우;손기훈;김성태;조남훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.21-24
    • /
    • 2001
  • Due to many advantage of advanced composite materials, researches on the composite marine pile is initiated. In this paper, structural characteristics of concrete filled glass fiber reinforced plastic (GFRP) composite pile model are studied. Through 4-point flexural test with various level of axial force, the performance of composite pile model was analyzed. Also numerical method to find P-M interaction diagram of composite pile was developed. It is showed that result of numerical method agrees well with experimental results, thus it is anticipated that numerical procedure can be utilized for design purpose.

  • PDF

Reliability Analysis of GFRP Laminated Composite Cylinderical Shells (GFRP 적층복합재료관의 신뢰성해석)

  • 조효남;신재철;이승재;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.85-88
    • /
    • 1992
  • In general, the strength and stiffness of laminated composite cylinderical shells are very sensitive to the variation of slenderness parameters, some coupling-stiffness parameters, lamination angles, stacking sequence and number of layers. In the paper, the effects of these factors on the strength and buckling reliabilities of GFRP laminated cyclinderical shells are investigated based on the proposed strength and buckling limit state models. It may be concluded that the applicable ranges of the slenderness limits of the strength and buckling failure criteria for laminated composite cylinderical shells should be indentified and incorporated into the design formula with appropriate safety factors which provide uniform consistent reliability for balanced design in practice.

  • PDF

Free Vibration Characteristics of the Steel and GFRP Composite Cylindrical Shells with Simply Supported Conditions (단순지지된 Steel 및 GFRP 복합재료 원통셸의 자유진동 특성)

  • 이영신;최명환;신도섭
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.273-284
    • /
    • 1999
  • The cylindrical shells are used as primary components of complex structures such as airplane fuselages and nuclear pressure vessels. Recently the free vibration analysis of these structures are investigated by many researchers. The engineering informations on experimental validation of the free vibration behavior on the simply supported cylindrical shells are very few. The experimental methods for realizing the physical boundary condition of simply supported edges are examined. Natural frequencies and mode shapes of the isotropic and plain weave composite simply supported shells are obtained by modal tests. A theoretical and finite element analysis are also performed in order to validate the experimental results. The experimental results indicate that the simply supported boundary conditions with bolts along the circumferential direction of shell in both ends are well achieved. Those are shown to agree with the analytical results and with the finite element analysis results. These methods can be used to realize other experimental simple support boundary conditions.

  • PDF

Structural Stability Study of C/GFRP Composite material Traffic Light Fixture and Wind Load (인발 성형법을 이용한 C/GFRP 복합소재 신호등 부착대의 구조적 안정성에 관한 연구)

  • Na, Kyoung-Su;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2021
  • As the climate changes rapidly due to warming, it is becoming very important to ensure the stability of environmental structures. It is necessary to choose a material that withstands repeated external forces (wind loads) and satisfies members and joints that have energy absorbing power. Even if the strength of the traffic light attachment is sufficient, if the rigidity is insufficient, there is a limit to the displacement during strong winds. Excessive deformation may cause damage and fall, resulting in a safety accident. The author intends to study mechanical properties and resistance to external environment as a structural material capable of withstanding wind load (50m/sec) by fabricating a C/GFRP composite traffic light attachment using the pultrusion method (Pultrusion).

Manufacturing of GFRP Sheet Using Plain Weaving Method (평직직조방법을 적용한 GFRP Sheet 제조에 관한 연구)

  • Kim, in Woo;Kim, Hyoung Seok;Lee, Jung Hoon;Lee, Dong Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.849-855
    • /
    • 2014
  • The GFRP composite is used for hot press flow molding of automotive components, and the different flow rates of fiber and plastic are likely to induce fiber orientation and inhomogeneity in the material. However, very limited systematic research studies are available on composite materials with superior flow homogeneity and optimized fiber orientation. The inhomogeneity and fiber orientation issues of GFRP composites have still not been resolved through research. The plain weaving method applied to the GFRP prepreg can improve its recyclability, inhomogeneity, fiber flow, structural stability, fiber deformation, surface smoothness, degree of impregnation, and other mechanical properties. The need for more detailed and thorough studies is evidenced.

Long-term Ring Deflection Prediction of GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 GFRP관의 장기관변형 예측)

  • Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, underground pipes are utilized in various fields of applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation pertaining to the structural behavior of glass fiber reinforced thermosetting polymer plastic (GFRP) flexible pipes buried underground. The mechanical properties of the GFRP flexible pipes produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, ring deflection is measured by the field tests and the finite element analysis (FEA) is also conducted to simulate the structural behavior of GFRP pipes buried underground. From the field test results, we predicted long-term, up to 50 years, ring deflection of GFRP pipes buried underground based on the method suggested by the existing literature. It was found that the GFRP flexible pipe to be used for cooling water intake system in the nuclear power plant is appropriate because 5% ring deflection limitation for 50 years could be satisfied.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Experimental Study of Durability of GFRP for Chemical Environment (GFRP의 화학 환경에 대한 내구성 시험)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyeong-Yeol;Moon, Chang-Kwon;Lee, Seong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.605-608
    • /
    • 2006
  • This paper presents experimental results for durability performance of GFRP composite exposed to various environmental conditions. Specimens were conditioned for 7 environmental cases and immerged up to 150 days. A total of 720 specimens were prepared and tested for tensile strength for each immersion time. The results indicate that the tensile strength of the conditioned specimens was significantly reduced, regardless of the environmental factors considered, due to the degradation of GFRP.

  • PDF