• Title/Summary/Keyword: GFRP bars

Search Result 92, Processing Time 0.031 seconds

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

PVC and POM gripping mechanisms for tension testing of FRP bars

  • Basaran, Bogachan;Yaka, Harun;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • The present study pertains to the introduction of two new types of grip adaptor for universal testing machines, namely Polyvinyl Chloride (PVC) and Polyoxymethylene (POM) grip adaptors, and their application to tension testing of FRP bars with different fiber and surface finish types. The tabs are connected to the FRP bar sample with the help of mechanical anchors, i.e. bolts. These new adaptors offer vital superiorities over the existing end tab designs (anchors with filling material or mechanical anchorage), including the reduction in the time and labor for production, reusability and the mild nature, i.e. low hardness of the tab material, which retards and even prevents peeling and crushing in the gripping regions of an FRP sample. The methods were successfully applied to FRP bars with different types of fiber (CFRP, GFRP and BFRP) and different types of surface texture (ribbed, wrapped, sand-coated and wound). The test results indicated that the both types of end caps prevented slip of the bar, crushing and peeling in the gripping zone. The mechanical properties from the material tests with the new caps were in perfect agreement with the ones from the material tests with steel tubular caps.

Flexural Crack for Fiber-Reinforced-Polymer Reinforced Concrete Beams (GFRP 보강근 콘크리트 보의 휨균열)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.273-276
    • /
    • 2008
  • The use of FRP(Fiber Reinforced Polymer) bars to replace conventional steel bars in reinforcing concrete structures is currently encouraged by many structural engineers, especially for their noncorrosive properties. The partial inferiority of the bond and mechanical properties for FRP bars, however, leads to wider and deeper cracks compared with those of steel reinforced concrete structures. This paper presents experimental results of concrete beams reinforced with FRP bars tested under static loading conditions up to failure. The study focuses on the effects of the reinforcement ratio on the behavior of concrete beams at various stages during loading. The study also attempts to establish a theoretical basis for the development of simple and rational design procedures for concrete beams reinforced with FRP bars.

  • PDF

Application of Concentrated FRP Bars to Enhance the Capacity of Two-Way Slabs (2방향 슬래브의 성능 향상을 위한 집중 배근된 FRP 바의 적용)

  • Lee, Joo-Ha;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.727-734
    • /
    • 2007
  • The influence of the differences in the physical and mechanical properties between fiber-reinforced polymer (FRP) and conventional steel, concentrated reinforcement in the immediate column region, as well as using steel fiber-reinforced concrete (SFRC) in the slab near the column faces, on the punching behavior of two-way slabs were investigated. The punching shear capacity, stiffness, ductility, strain distribution, and crack control were investigated. Concentrating of the slab reinforcement and the use of SFRC in the slab enhanced the punching behavior of the slabs reinforced with glass fiber-reinforced polymer (GFRP) bars. In addition the test results of the slabs with concentrated reinforcement were compared with various code equations and the predictions proposed in the literature specifically for FRP-reinforced slabs. An appropriate method for determining the reinforcement ratio of slabs with a banded distribution was also investigated to allow predictions to properly reflect the benefit of the slab reinforcement concentration.

Bond Performance of FRP Reinforcing Bar for Concrete Structures after Chemical Environmental Exposure (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 부착 성능)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • FRP reinforcing bars(rebars) are produced through a variety of manufacturing process includes pultrusion, and filament winding and braiding etc. Each manufacturing method produces a different surface condition of FRP rebar. The surface properties of FRP rebar is an important property for mechanical bond with concrete. Current methods of providing surface deformation to FRP rebars include helical wrapping, surfaces and coating and rib molding. The problem with the helical wrapping method is that it can not provide enough surface deformation for good bond and it can be easily sheard off from the FRP rebars. Sand coating and rib molding provide surface deformation only to the outer FRP skins. Therefore, FRP rebar has about 60% of bond strength of steel rebar. The main objective was to evaluate the bond properties of FRP rebar after environmental exposure. Five types of FRP rebar includes CFRP ISO, GFRP Aslan, AFRP Technora CFRP(Korea), and GFRP(Korea) rebars performed direct bond tests. Also, FRP rebar bond specimens were subjected to exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. According to bond test results, CFRP(Korea) and CFRP(Korea) rebars were found to have better bond strength with concrete than previous FRP rebars. Also, FRP(Korea) rebar had more than about 70% in bond strength of steel rebar.

Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures (콘크리트 보강용 FRP 리바의 개발 및 내구 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Yoon, Jong-Han;Hwang, Kum-Sik;Cho, Yong-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF

Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과)

  • Park, Chan-Gi;Won, Jong-Pil;Yoo, Jung-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.811-819
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP re-bar is pone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Other potentially FRP re-bar aggressive environments are sea water, acid solution and fresh water/moisture. In this study long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP-, GFRP re-bar and one type of AFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile, compressive and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.

Investigation of interface response of reinforced concrete columns retrofitted with composites

  • Achillopoulou, Dimitra V.;Kiziridou, Alexandra N.;Papachatzakis, Georgios A.;Karabinis, Athanasios I.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1337-1358
    • /
    • 2016
  • The current study focuses on the assessment and interface response of reinforced concrete elements with composite materials (carbon fiber reinforced polymers-CFRPs, glass fiber reinforced polymers-GFRPs, textile reinforced mortars-TRM's, near surface mounted bars-NSMs). A description of the transfer mechanisms from concrete elements to the strengthening materials is conducted through analytical models based on failure modes: plate end interfacial debonding and intermediate flexural crack induced interfacial debonding. A database of 55 in total reinforced concrete columns (scale 1:1) is assembled containing elements rehabilitated with various techniques (29 wrapped with CFRP's, 5 wrapped with GFRP's, 4 containing NSM and 4 strengthened with TRM). The failure modes are discussed together with the performance level of each technique as well as the efficiency level in terms of ductility and bearing/ bending capacity. The analytical models' results are in acceptable agreement with the experimental data and can predict the failure modes. Despite the heterogeneity of the elements contained in the aforementioned database the results are of high interest and point out the need to incorporate the analytical expressions in design codes in order to predict the failure mechanisms and the limit states of bearing capacities of each technique.