• Title/Summary/Keyword: GFP-transgenic

Search Result 113, Processing Time 0.026 seconds

Generation and Selection of Promoter Trap Lines for the Investigation of Shoot Development in Arabidopsis (애기장대에 있어서 shoot 발달 연구를 위한 프로모터 trap 라인들의 제조 및 선별)

  • Lee Hwa-Mok;Park Hee-Yeon;Zulfugarov Ismayil S.;Lee Choon-Hwan;Moon Yong-Hwan
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.540-545
    • /
    • 2006
  • T-DNA-mediated transformation is a common method for generating transgenic plants with insertional mutagenesis. In order to identify important genes involved in shoot development, a system of promoter trap insertional mutagenesis was employed in Arabidopsis thaliana. For this system, an efficient promoter trap vector, pFGL561 was developed. The pFGL561 includes a basta-resistant gene, an intron with multiple splicing donor and acceptor sites, and a promoter-less GFP reporter gene. Using floral-dipping method, we made total 300 $T_1$ promoter-trap lines which were screened for GFP expression. GFP signals in the $T_1$ plants were detected with high frequency, 26.7%, and the signals were reconfirmed in $T_2$ plants. To isolate the genes that are involved in shoot development, phenotypes were analyzed in $T_2$ plants of the 19 $T_1$ lines that had GFP signals in shoot apex, and 6 $T_1$ lines were selected that had abnormal shoot development. These lines will be very useful for the investigation of shoot development.

Expression of GFP Gene in the Porcine Preimplantation Embryos after ICSI with DNA/Sperm Complex

  • Han Joo-Hee;Kim Sung-Woo;Lee Poong-Yeon;Park Chun-Gyu;Lee Hyun-Gi;Yang Boh-Suk;Rhee Ki-Hyeong;Lee Chang-Hyung;Lee Hoon-Taek;Chang Won-Kyong;Park Jin-Ki
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • The possibility of producing transgenic embryos expressing the green fluorescence protein (GFP) gene have been evaluated after transfer of exogenous gene into the porcine zygote cytoplasm using the intracytoplasm sperm injection (ICSI) as gene delivery method. For DNA binding to sperm heads, 0.05% Triton X-100 or Lipofectin was used. After injection of the sperm bound to DNA by means of Lipofectin or Triton X-100 triturate, the blastocyst formation rates on day 6 were not significantly different from that of ICSI only group (18.8, 19.2 and 25.3%). In terms of GFP expression, more embryos were in GFP form in Triton X-100 group than in Lipofectin group (40.6 vs 36.4%), while percentage of non-mosaic embryos expressing the GFP gene in all blastomere was higher (P<0.05) in Lipofectin group than in Triton X-100 group (4.2 vs 0.9%). ICSI embryos derived from sperm treated with Lipofectin/DNA complex was transferred into 3 recipients and were collected by uterine flushing on days 5, 7 and 15 after embryo transfer, and then GFP expression was observed by a fluorescence microscopy. Over 26% of the collected embryos were normally expressed GFP gene. These results suggest that foreign gene transfer method with DNA bound sperm caused minimal damage to structure of oocytes that can result to full development of porcine embryos. This was confirmed in this study when the embryos that were transferred after ISCI of DNA bound sperm had a normal development and gene expression until preimplantation.

Targeting of Nuclear Encoded Proteins to Chloroplasts: a New Insight into the Mechanism

  • Lee, Yong-Jik;Kim, Yong-Woo;Pih, Kyeong-Tae;Hwang, Inhwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.407-409
    • /
    • 2000
  • Outer envelope membrane proteins of chloroplasts encoded by the nuclear genome are transported without the N-terminal transit peptide. Here, we investigated the targeting mechanism of AtOEP7, an Arabidopsis homolog of small outer envelope membrane proteins in vivo. AtOEP7 was expressed transiently in protoplasts or stably in transgenic plants as fusion proteins with GFP. In both cases AtOEP7:GFP was targeted to the outer envelope membrane when assayed under a fluorescent microscope or by Western blot analysis. Except the transmembrane domain, deletions of the N- or C-terminal regions of AtOEP7 did not affect targeting although a region closed to the C-terminal side of the transmembrane domain affected the targeting efficiency. Targeting experiments with various hybrid transmembrane mutants revealed that the amino acid sequence of the transmembrane domain determines the targeting specificity The targeting mechanism was further studied using a fusion protein, AtOEP7:NLS:GFP, that had a nuclear localization signal. AtOEP7:NLS:GFP was efficiently targeted to the chloroplast envelope despite the presence of the nuclear localization signal. Taken together, these results suggest that the transmembrane domain of AtOEP7 functions as the sole determinant of targeting specificity and that AtOEP7 may be associated with a cytosolic component during translocation to the chloroplast envelope membrane.

  • PDF

Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein (TgMTP1 과발현 애기장대에서 Nickel 흡수 연구)

  • Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.409-413
    • /
    • 2015
  • To enhance phytoremediation, which removes heavy metal from soil, transgenic plants were applied to contaminated soil. We constructed a transformation vector expressing both $TgMTP_1$ (T. goesingense metal tolerance protein):HA and TgMTP:GFP genes. Transgenic plants were generated using an Agrobacterium-mediated transformation system that expressed the two vectors. Screening and analysis confirmed the incorporation of foreign genes into the Arabidopsis thaliana genome. Callus was induced in the 116 T3 line. These transgenic plants and calli were used for further analyses on the accumulation of Ni. The 116 T3-line plants and calli from selected lines were resistant to heavy metals and accumulated Ni in their leaves. The expression level of TgMTP RNA was equal in all leaves, but protein stability increased in the leaves with Ni treatment. According to these results, we suggest that $TgMTP_1$-overexpressing plants may be useful for phytoremediation of soil.

Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice

  • Shin, Seung-Yub;Han, Tae-Hee;Lee, So-Yeong;Han, Seong-Kyu;Park, Jin-Bong;Erdelyi, Ferenc;Szabo, Gabor;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.163-169
    • /
    • 2011
  • Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p<0.01 by $x^2$-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.

Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

  • Lee, Sa Mi;Kang, Kyungsu;Chung, Hyunsup;Yoo, Soon Hee;Ming Xu, Xiang;Lee, Seung-Bum;Cheong, Jong-Joo;Daniell, Henry;Kim, Minkyun
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.401-410
    • /
    • 2006
  • The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastidexpressed green fluorescent protein (GFP) and aminoglycoside 3′-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Antioxidant Activity of Ethyl acetate Fraction of Oat in Caenorhabditis elegans (귀리 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과)

  • Kwon, Kang Mu;Kim, Jun Hyeong;Yang, Jae Heon;Ki, Byeolhui;Hwang, In Hyun;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.251-256
    • /
    • 2021
  • Oat, the seeds of Avena sativa L. (Gramineae), is an important dietary staple for people in many countries. Previous studies reported that A. sativa had various pharmacological effects such as anti-inflammatory, antitumor, neurotonic, and antispasmodic activities. In this study, Caenorhabditis elegans model system was used to investigate the antioxidant activity of methanol extract of oat. The ethyl acetate soluble fraction of the oat methanol extract showed the best DPPH radical scavenging activity. The ethyl acetate fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction, SOD-3 expression was measured using GFP-expressing transgenic worm. As a result, the ethyl acetate fraction increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. In addition, the ethyl acetate fraction-treated CF1553 worm showed higher SOD-3::GFP intensity compared to the control.

Positive Regulator, a Rice C3H2C3-type RING Finger Protein H2-3(OsRFPH2-3), in Response to Salt Stress

  • Min Seok Choi;Cheol Seong Jang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.156-156
    • /
    • 2023
  • Salinity is a major abiotic stress that limits rice productivity in many regions of the world. In order to develop salt stress tolerant rice plants, genetic engineering is a promising approach. We characterized the molecular function of rice C3H2C3 as a really interesting new gene (RING). Oryza sativa RING finger protein H2-3 (OsRFPH2-3) was highly expressed in 100 mM NaCl. To identify the localization of OsRFPH2-3, we fused vectors that include C-terminal GFP protein (35S;;OsRFPH2-3-GFP). OsRFPH2-3 was expressed in the nucleus in rice protoplasts. An in vitro ubiquitin assay demonstrated that OsRFPH2-3 possessed E3-ubiquitin ligase activity. However, the mutated OsRFPH2-3 were not possessed any E3-ubiquitin ligase activity. Under salinity conditions, OsRFPH2-3-overexpressing plants exhibited higher chlorophyll, proline, SOD, POD, CAT, and soluble sugar contents and lower H2O2 accumulation than wild-type plants, supporting transgenic plants with enhanced salinity tolerance phenotypes. OsRFPH2-3-overexpressing plants exhibited low Na+ accumulation and Na+/K+ ratios in their roots. Theses results suggest that overexpression of OsRFPH2-3 can make plant insensitivity about salinity conditions.

  • PDF

Germ Line Transformation of the Silkworm, Bombyx mori L. with a piggyBac Vector Harboring the Human Lactoferrin Gene (락토페린 유전자도입 piggyBac 벡터에 의한 누에 형질전환)

  • Kim, Yong-Soon;Sohn, Bong-Hee;Kim, Kee-Young;Jung, I-Yeon;Kim, Mi-Ja;Kang, Pil-Don
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • Lactoferrin, an ion-binding 80-kDa glycoprotein, has been suggested to have many biologic activities, such as facilitating ion absorption and having antimicrobial and anti-inflammatory effects. Several of these activities are likely to only be facilitated by human lactoferrin because they depend on the binding of human lactoferrin to specific receptor. To produce recombinant human lactoferrin to animal foods using transgenic silkworm, Bombyx mori L, we have cloned and sequenced the cDNA encoding for a human lactoferrin (HLf) from the mRNA in mammary tumor line (GI-101). As a result, the 2.5-kb fragment of HLf gene was cloned with pGEM-T vector and then this fragment was sequenced. In the nucleotide sequence analysis, single open reading frame of the 2,136-bp encoding for a polypeptide of 712 amino acid residues was detected. On the other hand, we constructed a recombinant plasmid(pPT-HLf), containing human lactoferrin gene for germ line transformation of the silkworm using a piggyBac transposon-derived vector. A nonautonomous helper plasmid encodes the piggyBac transposase. Approximately 6.7% of individuals in the G0 silkworms expressed green fluorescent protein (GFP). PCR analyses of GFP-positive silkworms (G0 and G1) revealed that independent insertions occurred frequently. Furthermore, Western blot analysis showed that the recombinant HLf expressed in hemolymph has the same molecular weight (80 kDa) as a native protein. On the basis of these experiments, expression of HLf in next generation of transgenic silkworm is now in process.