• Title/Summary/Keyword: GFAP expression

Search Result 97, Processing Time 0.028 seconds

Glial Fibrillary Acidic Protein Splice Variants in Hepatic Stellate Cells - Expression and Regulation

  • Lim, Michelle Chin Chia;Maubach, Gunter;Zhuo, Lang
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.376-384
    • /
    • 2008
  • The glial fibrillary acidic protein (GFAP) is traditionally used as a marker for astrocytes of the brain, and more recently for the hepatic stellate cells (HSCs) of the liver. Several GFAP splice variants have been previously reported in the astrocytes of the CNS and in the non-myelinating Schwann cells of the PNS. In this study, we investigate whether GFAP splice variants are present in the HSCs and their expression as a function of HSCs activation. Furthermore, the regulation of these transcripts upon treatment with interferon gamma ($IFN-{\gamma}$) will be explored. Using semi-quan-titative RT-PCR and real-time PCR, we examine the expression and regulation of GFAP splice variants in HSCs as well as their respective half-life. We discover that most of the GFAP splice variants ($GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$) found in the neural system are also expressed in quiescent and culture-activated primary HSCs. Interestingly, $GFAP{\alpha}$ is the predominant form in quiescent and culture-activated primary HSCs, while $GFAP{\beta}$, predominates in the SV40-immortalized activated HSC-T6. $GFAP{\delta}$, ${\varepsilon}$ and ${\kappa}$ have similar half-lives of 10 hours, while $GFAP{\beta}$ has a half-life of 17 hours. Treatment of HSC-T6 with $IFN-{\gamma}$ results in a significant 1.29-fold up-regulation of $GFAP{\alpha}$ whereas the level of the other transcripts remains unchanged. In summary, $GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$ are present in HSCs. They are differentially regulated on the transcription level, implying a role of the 5' and 3' untranslated regions.

Different expression of human GFAP promoter-derived GFP in different subsets of astrocytes in the mouse brain

  • Moon, Young-Hye;Kim, Hyun-Jung;Kim, Joo-Yeon;Kim, Hyun;Kim, Woon-Ryoung;Sun, Woong
    • Animal cells and systems
    • /
    • v.15 no.4
    • /
    • pp.268-273
    • /
    • 2011
  • Transgenic mice expressing green fluorescent protein (GFP) under the control of human glial fibrillary acidic protein promoter (hGFAP) have been utilized for in vivo labeling of astrocytes. Although it has been considered that virtually all astrocytes express GFP in this transgenic mouse, we found that different subsets of GFAP-expressing astrocytes express considerably different levels of GFP in the adult brain. Astrocytes in the spinal cord, the molecular layer of thecerebellum, meninges, white matter, corpus callosum and blood vessels exhibited strong GFP, whereas subsets of astrocytes associated with granule cells in the cerebellum and dentate gyrus did not or only marginally exhibited GFP. We also found that a small subset of GFP-expressing cells in the periglomeruli of the olfactory bulb did not express GFAP immunoreactivity. Collectively, these results suggest that human GFAP promoter-derived GFP expression does not faithfully recapitulate the endogenous GFAP expression in mice, suggesting that upstream regulatory mechanisms controlling GFAP transcription are different in different populations of astrocytes, and may reflect the functional diversity of astrocytes.

The Effect of the Radix Ginseng on Expression of CDSI and GFAP Following Hypoxic Injury on Central Nervous System (인삼(人蔘)이 허혈성 중추신경 손상으로 발현 증가된 CD81 및 GFAP에 미치는 영향)

  • Seo, Jong-Hoon;Song, Bong-Gun;Lyu, Yeoung-Su;Kang, Hyung-Won;Kim, Tae-Heon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.1
    • /
    • pp.177-197
    • /
    • 2009
  • Objectives : Gliosis disturbs recovery of damaged astrocytes following central nervous system(CNS) injury. Gliosis relates to up-regulation of CD81 and GFAP. In glial cells at injured CNS, the expression of CD81 and GFAP is increased. It is possible that when the gliosis formation is suppressed, regeneration of oxons can occur. According to the recent study, the treatment with anti CD81 antibodies enhanced functional recovery in rats with spinal injury. So, the author studies the effect of water extract of Radix Ginseng on regulation of CD81 and GFAP with CNS injury. Methods : In the cell study, hypoxic damage was induced by CoC12. And according to Longa et al, cerebral ischemia was made by middle cerebral artery occlusion in the rat. Cross sections of rat brain were examined under microscope. MTT analysis was performed to examine cell viability, cell based ELISA, Western Blot and PCR were used to detect the expression of CD81 and GFAP. Results : The following results were obtained. 1. We found that CD81 and GFAP were decreased in hypoxic injured cells following Radix Ginseng administration. 2. We injected the extract of Radix Ginseng to the middle cerebral artery occlusion in rats, and the immunohistochemistry analysis showed that CDS1 and GFAP were decreased. Conclusions : These results show that the extract of Radix Ginseng could suppress the gliosis formation and prevent cell death, by controlling the expression of CDS1 and GFAP. Therefore, Radix Ginseng could be a useful to regenerate CNS injury.

  • PDF

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF

Effect of the Water Extract of Persicae Semen on Promotion of Axon Regeneration (도인(桃仁)이 중추신경 재생 촉진에 미치는 영향)

  • Shin, Jin-Bong;Moon, Goo;Lee, Jong-Deuk;Won, Jin-Hee;Lee, Jae-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.145-152
    • /
    • 2007
  • Following CNS injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. It is postulated that the astrocytic reaction is absent, regeneration of axons can occur. And it was reported that treatment with anti CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Persicae Semen on the regulation of GFAP and CD81 that increase when gliosis occurs. Persicae Semen decreased the expression of GFAP and CD81 in astrocyte cell by ELISA method. Persicae Semen decreased the RNA expression of CD81 and GFAP. The proteins that separate in whole cell were analaysed by western blot, and the expression of GFAP and CD81 was decreased. In vivo, rats brains were peformed cortical stab wound, the water extracts of Persicae Semen were injected for 7 days, 30 days. As a result, GFAP and CD81 expression were decreased in immunohistochemistry. These findings demonstrate that Persicae Semen decreases GFAP and CD81 expression. Accordingly, Persicae Semen could be a candidate for promotion of axon regeneration after CNS injury.

The Effect of the Moutan Radicis Cortex on Expression of CD81 and GFAP in Injured Astrocyte (목단피(牧丹皮)가 손상된 성상신경세포의 CD81 및 GFAP의 발현에 미치는 영향)

  • Moon, Sung-Jin;Seon, Ki-Moon;Lim, Jin-Young;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.24-35
    • /
    • 2009
  • Object : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis makes physical and mechanical barriers. If gliosis formation could be suppressed, irreversible axon damage would be reduced. This could mean that an injured CNS could be regenerated. CD81 and GFAP have close relationships to gliosis. The increase in glial cells at CNS injury gives rise to the expression of CD81 and GFAP. CD81 was postulated to play a central role in the process of CNS scar formation. Method : In this study, the author investigated the effect of the water extract of the Moutan Radicis Cortex on regulation of CD81 and GFAP expression in injured CNS cells. MTT assay was used to examine cell viability, while RT-PCR and ELISA methods were carried out to measure the expression of CD81 and GFAP in the astrocyte. Results : We observed that water extract of the Moutan Radicis Cortex increased cell viability under hypoxia induced by $CoCl_2$ and suppressed the expression of CD81 and GFAP up-regulated by hypoxia. Conclusion : These results suggest that the Moutan Redicis Cortex could promote neural regeneration as a consequence of protecting CNS cells from hypoxia and suppressing the reactive gliosis following CNS injury.

  • PDF

Effects of Fenvalerate on Apoptosis Level and GFAP Expression in the Brain Tissue of the Pale Chub (Pisces: Zacco platypus) (Fenvalerate가 피라미(Zacco platypus) 뇌 조직에서 apoptosis 정도와 GFAP 발현에 미치는 영향)

  • Kim, Sung-Woo;Park, No-Kwan;Lee, Sang-Rae;Reu, Dong-Suck
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.53-59
    • /
    • 2012
  • We evaluated the level of toxicity by LC50 and investigated the mechanism of brain impairment and GFAP expression by light and fluorescence microscopes in the pale chub, Zacco platypus, treated with fenvalerate. Survival rate was decreased according to the rise of fenvalerate concentration, and LC50 concentration was $27.79{\mu}g/L$. Apoptosis was increased according to the rise of fenvalerate concentration by TUNEL assay which determine apoptotic cell death population. Also, GFAP expression was increased in the periventricular zone. These results suggest that apoptosis might be a major mechanism to brain impairment of the pale chub by fenvalrerate. Increased GFAP expression in the periventricular zone would be an index of brain impairment. Taken together, this study might contribute to reveal the pathological mechanism of fish brain impairment by insecticide of pyrethroid, and to be an useful basic data for preservation of aquatic ecosystem.

The Effect of the Water Extract of Angelica Sinens on Gliosis Repression of Astrocyte after Hypoxic injury (당귀가 저산소로 손상된 성상세포의 gliosis 억제에 미치는 영향)

  • Lee, Seung-Hee;Moon, Seong-Jin;Shin, Jin-Bong;Hae, Rae-Kyong;Seong, Kee-Moon;Yang, Jae-Hoon;Song, Bong-Keun
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.167-178
    • /
    • 2008
  • Object : Gliosis becomes a physical and mechanical barrier to axonal regeneration. Reactive gliosis induced by hypoxic brain injury is involved with up-regulation of CD81 and GFAP. The current study was to examine the effect of the Angelica Sinens on CD81 and GFAP regulation after hypoxic brain injury in the astrocyte. Methods : MTT assay was performed to examine cell viability, and cell based ELISA, western blot and PCR were used to detect the expression of CD81 and GFAP. Results : The following results were obtained: 1. Using ELISA, western blot and PCR from the astrocyte after hypoxic injury, CD81 and GFAP expression was seen to have increased. 2. After the administration of Angelica Sinens extract to astrocyte following hypoxic injury, CD81 and GFAP expression was down regulated significantly. The water extract of Angelica Sinens prevented cell destruction by hypoxic induced with $CoCl_2$. Conclusion : These results indicate that Angelica Sinens could suppress reactive gliosis, which disturbs astrocyte regeneration after hypoxic brain injury by controlling the expression of CD81 and GFAP.

  • PDF

The Effect of Gongjin-dan on Gliosis in Middle Cerebral Artery Occlusion (MCAO) Rats (공진단이 MCAO모델 흰쥐에서 gliosis 억제에 마치는 영향)

  • Seong, Kee-Moon;Hae, Rae-Kyong;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.674-684
    • /
    • 2009
  • Objectives : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis becomes a physical and a mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. This study was undertaken to examine the effect of the Gongjin-dan (GJD) on CD81 and GFAP expression and its pathway in the rat brain following middle cerebral artery occlusion (MCAO). Methods : In order to study ischemic injuries on the brain, infarction was induced by MCAO using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Also, c-Fos and ERK expression were measured to investigate the signaling pathway after GJD administration in MCAO rats. Results : Measuring the size of cerebral infarction induced by MCAO in the rat after injection of GJD showed the size had decreased. GJD administration showed pyramidal cell death protection in the hippocampus in the MCAO rat. GJD administration decreased GF AP expression in the MCAO rat. GJD administration decreased CD81 expression in the MCAO rat. GJD administration induced up-regulation of c-FOS expression compared with MCAO. GJD administration induced down-regulation of ERK expression compared with MCAO. Conclusion : We observed that GJD could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of a rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the regulation of c-Fos and ERK. These results suggest that GJD can be a candidate to regenerate CNS injury.

  • PDF

The Effect of the Uncariae Ramulus et Uncus on the Regeneration Following CNS Injury (중추신경계 손상 회복에 미치는 대한 조구등의 영향)

  • Lee, Jin-Goo;Park, Hyoung-Jin;Kim, Dong-Woong;Song, Bong-Keun
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • Objective : Following central nervous system(CNS) injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Also myelin debris such as MAG inhibits axonal regeneration. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. MAG is one of several endogenous axon regeneration inhibitors that limit recovery from CNS injury and disease. It was reported that molecules that block such inhibitors enhanced axon regeneration and functional recovery. Recently it was reported that treatment with anti-CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Uncariae Ramulus et Uncus on the regulation of CD81, GFAP and MAG that increase when gliosis occurs. Methods : MTT assay was performed to examine cell viability, and cell-based ELISA, western blot and PCR were used to detect the expression of CD81, GFAP and MAG. Then also immunohistochemistry was performed to confirm in vivo. Results : Water extract of Uncariae Ramulus et Uncus showed relatively high cell viability at the concentration of 0.05%, 0.1% and 0.5%. The expression of CD81, GFAP and MAG in astrocytes was decreased after the administration of Uncariae Ramulus et Uncus water extract. These results was confirmed in the brain sections following cortical stab injury by immunohistochemistry. Conclusion : The authors observed that Uncariae Ramulus et Uncus significantly down-regulates the expression of CD81, GFAP and MAG. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.