• Title/Summary/Keyword: GCP(Ground Control Point)

Search Result 86, Processing Time 0.024 seconds

Assessment of Positioning Accuracy of UAV Photogrammetry based on RTK-GPS (RTK-GPS 무인항공사진측량의 위치결정 정확도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.63-68
    • /
    • 2018
  • The establishment of Ground Control Points (GCPs) in UAV-Photogrammetry is a working process that requires the most time and expenditure. Recently, the rapid developments of navigation sensors and communication technologies have enabled Unmanned Aerial Vehicles (UAVs) to conduct photogrammetric mapping without using GCP because of the availability of new methods such as RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) technology. In this study, an experiment was conducted to evaluate the potential of RTK-UAV mapping with no GCPs compared to that of non RTK-UAV mapping. The positioning accuracy results produced by images obtained simultaneously from the two different types of UAVs were compared and analyzed. One was a RTK-UAV without GCPs and the other was a non RTK-UAV with different numbers of GCPs. The images were taken with a Canon IXUS 127 camera (focal length 4.3mm, pixel size $1.3{\mu}m$) at a flying height of approximately 160m, corresponding to a nominal GSD of approximately 4.7cm. As a result, the RMSE (planimetric/vertical) of positional accuracy according to the number of GCPs by the non-RTK method was 4.8cm/8.2cm with 5 GCPs, 5.4cm/10.3cm with 4 GCPs, and 6.2cm/12.0cm with 3 GCPs. In the case of non RTK-UAV photogrammetry with no GCP, the positioning accuracy was decreased greatly to approximately 112.9 cm and 204.6 cm in the horizontal and vertical coordinates, respectively. On the other hand, in the case of the RTK method with no ground control point, the errors in the planimetric and vertical position coordinates were reduced remarkably to 13.1cm and 15.7cm, respectively, compared to the non-RTK method. Overall, UAV photogrammetry supported by RTK-GPS technology, enabling precise positioning without a control point, is expected to be useful in the field of spatial information in the future.

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

Measurement of flood discharge verification from drones (드론을 활용한 홍수량 검증 측정)

  • Lee, Tae Hee;Lim, Hyeokjin;Kim, Soo Hong;Jung, Sung Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.74-74
    • /
    • 2019
  • 수문조사를 통한 유량자료는 물의 이수, 치수, 환경 등 홍수피해 방지, 수자원의 관리 및 계획을 위한 기초자료로 이용되고 있다. 하지만 예산, 인력, 안전 및 하천공사 등의 문제로 매년 모든 지점에서 유량 측정을 실시하지 못하는 어려움이 있다. 특히 홍수기의 태풍 등 큰 호우사상 발생 시 수위-유량관계 변화 검토가 필요하지만 홍수기 계획지점 이외 지점에서 측정은 위와 같은 문제로 어려움이 있다. 따라서 본 연구에서는 이런 문제점을 개선하기 위해 최소 인력이 단시간 간편하게 드론을 활용하여 유량을 측정할 수 있는 방법을 도입하였다. 드론을 활용한 유량측정방법은 드론 사진측량 개념에서 접근하였으며 드론 사진측량의 정확도는 다양한 분야에서 많은 연구를 통해 입증된 바가 있다. 본 연구의 대상지점은 중랑천 상류에 위치한 의정부시(신곡교) 지점에서 보급형 회전익 드론 (DJI, 팬텀4 pro)을 활용하여 검증 목적을 위해 측정하였다. 유량측정은 드론으로 촬영된 항공사진 상에서 지상에 위치확인 가능한 지상기준점(GCP, Ground Control Point) 4개점을 선점하고 RTK-VRS 장비를 이용하여 측량을 수행하였다. 항공사진 촬영은 드론을 일정높이의 공중에 정지되어 있는 호버링(Hovering) 상태에서 카메라 타임랩스 기능으로 3초 간격 하도 내 수표면을 촬영하였다. 항공사진 수표면에 유하하는 부유물의 3초 간격 이동위치와 GCP 자료를 활용하여 X, Y 좌표 분석을 통해 3초간 이동거리를 표면유속으로 산정하고 통수단면적을 적용하여 유량을 산정하였다. 이와 같이 드론 사진측량으로 산정된 유량과 일반적인 유량측정 방법을 통해 개발된 수위-유량관계곡선식과의 비교를 통해 드론을 활용한 유량측정 방법의 적용성을 확인하였다. 다만, 드론이라는 기계적인 장비의 한계로 야간, 바람 및 강우 등 환경적인 요인에 의해 측정의 제한이 있을 것으로 판단된다.

  • PDF

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

Generation of the KOMPSAT-2 Ortho Mosaic Imagery on the Korean Peninsula (아리랑위성 2호 한반도 정사모자이크영상 제작)

  • Lee, Kwang-Jae;Yyn, Hee-Cheon;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.103-114
    • /
    • 2013
  • In this study, we established the ortho mosaic imagery on the Korean Peninsula using KOMPSAT-2 images and conducted an accuracy assessment. Rational Polynomial Coefficient(RPC) modeling results were mostly less than 2 pixels except for mountainous regions which was difficult to select a Ground Control Point(GCP). Digital Elevation Model(DEM) which was made using the digital topographic map on the scale of 1:5,000 was used for generating an ortho image. In the case of inaccessible area, the Shuttle Radar Topography Mission(SRTM) DEM was used. Meanwhile, the ortho mosaic image of the Korean Peninsula was produced by each ortho image aggregation and color adjustment. An accuracy analysis for the mosaic image was conducted about a 1m color fusion image. In order to verify a geolocation accuracy, 813 check points which were acquired by field survey in South Korea were used. We found that the maximum error was not to exceed 5m(Root Mean Square Error : RMSE). On the other hand, in the case of inaccessible area, the extracted check points from a reference image were used for accuracy analysis. Approximately 69% of the image has a positional accuracy of less than 3m(RMSE). We found that the seam-line accuracy among neighboring image was very high through visual inspection. However, there were a discrepancy with 1 to 2 pixels at some mountainous regions.

A Study on the Use of Drones for Disaster Damage Investigation in Mountainous Terrain (산악지형에서의 재난피해조사를 위한 드론 맵핑 활용방안 연구)

  • Shin, Dongyoon;Kim, Dajinsol;Kim, Seongsam;Han, Youkyung;Nho, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1209-1220
    • /
    • 2020
  • In the case of forest areas, the installation of ground control points (GCPs) and the selection of terrain features, which are one of the unmanned aerial photogrammetry work process, are limited compared to urban areas, and safety problems arise due to non-visible flight due to high forest. To compensate for this problem, the drone equipped with a real time kinematic (RTK) sensor that corrects the position of the drone in real time, and a 3D flight method that fly based on terrain information are being developed. This study suggests to present a method for investigating damage using drones in forest areas. Position accuracy evaluation was performed for three methods: 1) drone mapping through GCP measurement (normal mapping), 2) drone mapping based on topographic data (3D flight mapping), 3) drone mapping using RTK drone (RTK mapping), and all showed an accuracy within 2 cm in the horizontal and within 13 cm in the vertical position. After evaluating the position accuracy, the volume of the landslide area was calculated and the volume values were compared, and all showed similar values. Through this study, the possibility of utilizing 3D flight mapping and RTK mapping in forest areas was confirmed. In the future, it is expected that more effective damage investigations can be conducted if the three methods are appropriately used according to the conditions of area of the disaster.

A Study on Large Scale Digital Mapping Using High Resolution Satellite Images (고해상도 위성영상을 이응한 대축척 수치지도 제작에 관한 연구)

  • 윤홍식;조재명;조정호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.321-326
    • /
    • 2003
  • The subjects of this study are to examine and to apply the methods of making 1:5,000 scale maps using 1m resolution stereo images of IKONOS for the Munsan area of Paju-city where aerial photo surveying cannot possible because of security conditions. GCP(Ground Control Point) were acquired from GPS surveying and were to perform geometric corrections on images. Digital Map used IKONOS stereo images and it worked from the digital analytical stereoplotter. From field investigation, RMSE errors of the plane and vertical positions are estimated to 1.706m and 1.231m, respectively. The plane accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as digital map under the scale of 1/5,000.

  • PDF

Development of the integration information search reference system for a Test-bed area

  • Lee, D.H.;Lee, Y.I.;Kim, D.S.;Kim, Yoon-Soo;Kim, I.S.;Kim, Y.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1418-1420
    • /
    • 2003
  • This presentation summarizes the development of the integration information search system for a Test-bed area located in Daejeon. It will be used for the validation of software components developed for the high resolution satellite image processing. The system development utilizes the Java programming language and implements the web browse capabilities to search, manage, and augment the satellite image data, the Ground Control Point(GCP) data, the spectral information on land cover types, the atmospheric data, and the topographical map.

  • PDF

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.