• 제목/요약/키워드: GCN(Graph Convolutional Network) 모델

검색결과 9건 처리시간 0.03초

의미적 유사성과 그래프 컨볼루션 네트워크 기법을 활용한 엔티티 매칭 방법 (Entity Matching Method Using Semantic Similarity and Graph Convolutional Network Techniques)

  • 단홍조우;이용주
    • 한국전자통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.801-808
    • /
    • 2022
  • 대규모 링크드 데이터에 어떻게 지식을 임베딩하고, 엔티티 매칭을 위해 어떻게 신경망 모델을 적용할 것인가에 대한 연구는 상대적으로 많이 부족한 상황이다. 이에 대한 가장 근본적인 문제는 서로 다른 레이블이 어휘 이질성을 초래한다는 것이다. 본 논문에서는 이러한 어휘 이질성 문제를 해결하기 위해 재정렬 구조를 결합한 확장된 GCN(Graph Convolutional Network) 모델을 제안한다. 제안된 모델은 기존 임베디드 기반 MTransE 및 BootEA 모델과 비교하여 각각 53% 및 40% 성능이 향상되었으며, GCN 기반 RDGCN 모델과 비교하여 성능이 5.1% 향상되었다.

TeGCN:씬파일러 신용평가를 위한 트랜스포머 임베딩 기반 그래프 신경망 구조 개발 (TeGCN:Transformer-embedded Graph Neural Network for Thin-filer default prediction)

  • 김성수;배준호;이주현;정희주;김희웅
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.419-437
    • /
    • 2023
  • 국내 씬파일러(Thin Filer)의 수가 1200만명을 넘어서며, 금융 업계에서 씬파일러의 신용을 정확히 평가하여 우량고객을 선별해 대출을 공급하는 시도가 많아지고 있다. 특히, 차주의 신용정보에 존재하는 비선형성을 반영하여 채무불이행을 예측하기 위해서 다양한 머신러닝 알고리즘을 활용한 연구가 진행되고 있다. 그 중 그래프 신경망 구조(Graph Neural Network)는 일반적인 신용정보 외에 대출자 간의 네트워크 정보를 반영할 수 있다는 점에서 데이터가 부족한 씬파일러의 채무 불이행 예측에서 주목할 만하다. 그러나, 그래프 신경망을 활용한 기존의 연구들은 신용정보에 존재하는 다양한 범주형 변수를 적절히 처리하지 못했다는 한계가 있었다. 이에 본 연구는 범주형 변수의 맥락적 정보를 추출할 수 있는 트랜스포머 메커니즘(Transformer mechanism)과 대출자 간 네트워크 정보를 반영할 수 있는 그래프 합성곱 신경망(Graph Convolutional Network)를 결합하여 효과적으로 씬파일러의 채무 불이행 예측이 가능한 TeGCN (Transformer embedded Graph Convolutional Network)를 제안한다. TeGCN는 일반 대출자 데이터셋과 씬파일러 데이터셋에 대하여 모두 베이스 라인 모델 대비 높은 성능을 보였으며, 특히 씬파일러 채무 불이행 예측에 우수한 성능을 달성했다. 본 연구는 범주형 변수가 많은 신용정보와 데이터가 부족한 씬파일러의 특성에 적합한 모델 구조를 결합하여 높은 채무 불이행 예측 성능을 달성했다는 시사점이 있다. 이는 씬파일러의 금융소외문제를 해결하고 금융업계에서 씬파일러를 대상으로 추가적인 수익을 창출하는데 기여할 수 있을 것이다.

GCN 모델을 이용한 화재 상황인식 (Recognition of Fire Situation Using GCN model)

  • 김시진;박지수;손진곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.652-655
    • /
    • 2023
  • 우리나라에서는 지난 10년간 매년 4만 건 내외의 화재가 발생하여 많은 인명 피해와 경제적 손실이 발생하고 있다. 화재가 발생했을 때는 화재를 신속히 진압하여 인명 피해와 경제적 손실을 최소화하여야 한다. 또한, 화재 사고를 예방하기 위해 화재의 발화 원인이 무엇인지 알아내야 한다. 기존의 화재 경보 시스템에서는 온도, 연기, 불꽃 센서 등으로 화재를 감지하였으나 오경보나 화재를 인식하지 못하는 문제, 화재 원인을 구분하지 못하는 문제 등이 있었다. 또한, 사람이 화재 발생을 인지하기까지 시간이 많이 소요될 수 있고 부재로 인해 화재 상황인식이 늦어질 수도 있는 문제가 있었다. 이러한 문제를 해결하기 위해 본 논문에서는 GCN(Graph Convolutional Network) 모델을 이용하여 화재 상황에서의 복합 센서 상황을 학습해서 실제 화재 사고가 발생했을 때 화재의 원인을 구분할 수 있는 모델을 제안한다.

행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘 (Multi-Region based Radial GCN algorithm for Human action Recognition)

  • 장한별;이칠우
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.46-57
    • /
    • 2022
  • 본 논문에서는 딥러닝을 기반으로 입력영상의 옵티컬 플로우(optical flow)와 그래디언트(gradient)를 이용하여 종단간 행동인식이 가능한 다중영역 기반 방사성 GCN(MRGCN: Multi-region based Radial Graph Convolutional Network) 알고리즘에 대해 기술한다. 이 방법은 데이터 취득이 어렵고 계산이 복잡한 스켈레톤 정보를 사용하지 않기 때문에 카메라만을 주로 사용하는 일반 CCTV 환경에도 활용이 가능하다. MRGCN의 특징은 입력영상의 옵티컬플로우와 그래디언트를 방향성 히스토그램으로 표현한 후 계산량 축소를 위해 6개의 특징 벡터로 변환하여 사용한다는 것과 시공간 영역에서 인체의 움직임과 형상변화를 계층적으로 전파시키기 위해 새롭게 고안한 방사형 구조의 네트워크 모델을 사용한다는 것이다. 또 데이터 입력 영역을 서로 겹치도록 배치하여 각 노드 간에 공간적으로 단절이 없는 정보를 입력으로 사용한 것도 중요한 특징이다. 30가지의 행동에 대해 성능평가 실험을 수행한 결과 스켈레톤 데이터를 입력으로 사용한 기존의 GCN기반 행동인식과 동등한 84.78%의 Top-1 정확도를 얻을 수 있었다. 이 결과로부터 취득이 어려운 스켈레톤 정보를 사용하지 않는 MRGCN이 복잡한 행동인식이 필요한 실제 상황에서 더욱 실용적인 방법임을 알 수 있었다.

그래프 신경망에 대한 그래디언트 부스팅 기법 (A Gradient Boosting Method for Graph Neural Networks)

  • 장은조;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.574-576
    • /
    • 2022
  • 최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.

KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델 (KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph)

  • 이재윤;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권3호
    • /
    • pp.91-100
    • /
    • 2020
  • 기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 새로운 영상 기반 상식 추론(VCR) 문제들은 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등과 같이 추가적인 심층 상식 추론을 요구한다. 본 논문에서는 영상 기반 상식 추론 문제들을 위한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. KG_VCR 모델은 입력 데이터(영상, 자연어 질문, 응답 리스트 등)에서 추출하는 사물들 간의 관계와 맥락 정보들을 이용할 뿐만 아니라, 외부 지식 베이스인 ConceptNet으로부터 구해내는 상식 임베딩을 함께 활용한다. 특히 제안 모델은 ConceptNet으로부터 검색해낸 연관 지식 그래프를 효과적으로 임베딩하기 위해 그래프 합성곱 신경망(GCN) 모듈을 채용한다. VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서는 제안 모델인 KG_VCR이 기존의 VQA 최고 모델과 R2C VCR 모델보다 더 높은 성능을 보인다는 것을 입증한다.

그래프 합성곱 신경망에 대한 기울기(Gradient) 기반 설명 기법 (A Gradient-Based Explanation Method for Graph Convolutional Neural Networks)

  • 김채현;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.670-673
    • /
    • 2022
  • 설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.

시계열 내부 구조 기반 그래프 생성을 통한 행동 분류 모델 (Behavior Classification Model Based on Graph Generation Using Time Series Structural Feature)

  • 최혁순;양진환;김시웅;김성식;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.37-40
    • /
    • 2024
  • 본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.

지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소 (Word Sense Disambiguation Using Knowledge Embedding)

  • 오동석;양기수;김규경;황태선;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF