• Title/Summary/Keyword: GCM mode

Search Result 8, Processing Time 0.026 seconds

Implementation of LEA Lightwegiht Block Cipher GCM Operation Mode on 32-Bit RISC-V (32-Bit RISC-V상에서의 LEA 경량 블록 암호 GCM 운용 모드 구현)

  • Eum, Si-Woo;Kwon, Hyeok-Dong;Kim, Hyun-Ji;Yang, Yu-Jin;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • LEA is a lightweight block cipher developed in Korea in 2013. In this paper, among block cipher operation methods, CTR operation mode and GCM operation mode that provides confidentiality and integrity are implemented. In the LEA-CTR operation mode, we propose an optimization implementation that omits the operation between states through the state fixation and omits the operation through the pre-operation by utilizing the characteristics of the fixed nonce value of the CTR operation mode. It also shows that the proposed method is applicable to the GCM operation mode, and implements the GCM through the implementation of the GHASH function using the Galois Field(2128) multiplication operation. As a result, in the case of LEA-CTR to which the proposed technique is applied on 32-bit RISC-V, it was confirmed that the performance was improved by 2% compared to the previous study. In addition, the performance of the GCM operation mode is presented so that it can be used as a performance indicator in other studies in the future.

A Cryptographic Processor Supporting ARIA/AES-based GCM Authenticated Encryption (ARIA/AES 기반 GCM 인증암호를 지원하는 암호 프로세서)

  • Sung, Byung-Yoon;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2018
  • This paper describes a lightweight implementation of a cryptographic processor supporting GCM (Galois/Counter Mode) authenticated encryption (AE) that is based on the two block cipher algorithms of ARIA and AES. It also provides five modes of operation (ECB, CBC, OFB, CFB, CTR) for confidentiality as well as the key lengths of 128-bit and 256-bit. The ARIA and AES are integrated into a single hardware structure, which is based on their algorithm characteristics, and a $128{\times}12-b$ partially parallel GF (Galois field) multiplier is adopted to efficiently perform concurrent processing of CTR encryption and GHASH operation to achieve overall performance optimization. The hardware operation of the ARIA/AES-GCM AE processor was verified by FPGA implementation, and it occupied 60,800 gate equivalents (GEs) with a 180 nm CMOS cell library. The estimated throughput with the maximum clock frequency of 95 MHz are 1,105 Mbps and 810 Mbps in AES mode, 935 Mbps and 715 Mbps in ARIA mode, and 138~184 Mbps in GCM AE mode according to the key length.

An Implementation of GCM Authenticated Encryption based on ARIA Block Cipher (ARIA 블록암호 기반의 GCM 인증암호 구현)

  • Kim, Ki-Bbeum;Sung, Byung-Yoon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.185-187
    • /
    • 2017
  • 국제 표준화 기구인 ISO/IEC와 NIST(National Institute of Standards and Technology)에서는 정보 유출 방지 및 정보의 유효성 인증을 위해 다양한 암호 기법들을 표준으로 권고하고 있다. 그 중 NIST SP 800-38D에서 표준으로 권고된 GCM(Galois/Counter Mode) 인증 암호화 모드는 블록암호의 CTR 운영모드와 GHASH를 이용하여 메시지의 기밀성과 무결성을 동시에 제공하는 운영모드이다. 본 논문에서는 ARIA 블록암호 기반의 ARIA-GCM 프로세서를 Verilog HDL로 모델링 하고, Virtex5 FPGA로 구현하여 정상 동작함을 확인하였다. $0.18{\mu}m$ 공정의 CMOS 셀 라이브러리로 합성한 결과 20 MHz의 동작주파수에서 44,986 GE로 구현되었다.

  • PDF

Developing an Embedded Method to Recognize Human Pilot Intentions In an Intelligent Cockpit Aids for the Pilot Decision Support System

  • Cha, U-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.23-39
    • /
    • 1998
  • Several recent aircraft accidents occurred due to goal conflicts between human and machine actors. To facilitate the management of the cockpit activities considering these observations. a computational aid. the Agenda Manager (AM) has been developed for use in simulated cockpit environments. It is important to know pilot intentions performing cockpit operations accurately to improve AM performance. Without accurate knowledge of pilot goals or intentions, the information from AM may lead to the wrong direction to the pilot who is using the information. To provide a reliable flight simulation environment regarding goal conflicts. a pilot goal communication method (GCM) was developed to facilitate accurate recognition of pilot goals. Embedded within AM, the GCM was used to recognize pilot goals and to declare them to the AM. Two approaches to the recognition of pilots goals were considered: (1) The use of an Automatic Speech Recognition (ASR) system to recognize overtly or explicitly declared pilot goals. and (2) inference of covertly or implicitly declared pilot goals via the use of an intent inferencing mechanism. The integrated mode of these two methods could overcome the covert goal mis-understanding by use of overt GCM. And also could it overcome workload concern with overt mode by the use of covert GCM. Through simulated flight environment experimentation with real pilot subjects, the proposed GCM has demonstrated its capability to recognize pilot intentions with a certain degree of accuracy and to handle incorrectly declared goals. and was validated in terms of subjective workload and pilot flight control performance. The GCM communicating pilot goals were implemented within the AM to provide a rich environment for the study of human-machine interactions in the supervisory control of complex dynamic systems.

  • PDF

인공위성 반작용휠의 미소진동 측정 및 분석

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2004
  • In this paper, we briefly introduce the micro-vibration test bench of KARI and the test and analysis method of RWA(Reaction Wheel Assembly) micro-vibration. The micro-vibration of RWA is measured on a KISTLER dynamic plate which can measure the time signal of 6 DOF simultaneously up to 400Hz. Measured data are extensively evaluated with respect to the wheel spin rate to identify the complicate wheel dynamic characteristics, and the static/dynamic unbalances are estimated from the extracted first harmonic component as a part of evaluation process. The estimated static and dynamic unbalances. 0.79gcm and 17.4gcm² respectively. The structural resonance mode and two rocking modes observed as a results of its frequency analysis. Several higher order harmonic components observed, which come from its rotor shape as well as the wheel bearing characteristics.

  • PDF

Development of Spatial Statistical Downscaling Method for KMA-RCM by Using GIS (GIS를 활용한 KMA-RCM의 규모 상세화 기법 개발 및 검증)

  • Baek, Gyoung-Hye;Lee, Moun-Gjin;Kang, Byung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.136-149
    • /
    • 2011
  • The aim of this study is to develop future climate scenario by downscaling the regional climate model (RCM) from global climate model (GCM) based on IPCC A1B scenario. To this end, the study first resampled the KMA-RCM(Korea meteorological administration-regional climate model) from spatial resolution of 27km to 1km. Second, observed climatic data of temperature and rainfall through 1971-2000 were processed to reflect the temperature lapse rate with respect to the altitude of each meteorological observation station. To optimize the downscaled results, Co-kriging was used to calculate temperature lapse-rate; and IDW was used to calculate rainfall lapse rate. Fourth, to verify results of the study we performed correlation analysis between future climate change projection data and observation data through the years 2001-2010. In this study the past climate data (1971-2000), future climate change scenarios(A1B), KMA-RCM(Korea meteorological administration-regional climate model) results and the 1km DEM were used. The research area is entire South Korea and the study period is from 1971 to 2100. Monthly mean temperatures and rainfall with spatial resolution of 1km * 1km were produced as a result of research. Annual average temperature and precipitation had increased by $1.39^{\circ}C$ and 271.23mm during 1971 to 2100. The development of downscaling method using GIS and verification with observed data could reduce the uncertainty of future climate change projection.

Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature (하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교)

  • Yoo, Jung-Moon;Kim, Jin-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.137-158
    • /
    • 2000
  • The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

  • PDF

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF