• 제목/요약/키워드: GCC (Generalized Cross Correlation)

검색결과 23건 처리시간 0.018초

확률적 방향각 추정에 기반한 수중 음원의 위치 인식 기법 (Underwater Acoustic Source Localization based on the Probabilistic Estimation of Direction Angle)

  • 최진우;최현택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.206-215
    • /
    • 2014
  • Acoustic signal is crucial for the autonomous navigation of underwater vehicles. For this purpose, this paper presents a method of acoustic source localization. The proposed method is based on the probabilistic estimation of time delay of acoustic signals received by two hydrophones. Using Bayesian update process, the proposed method can provide reliable estimation of direction angle of the acoustic source. The acquired direction information is used to estimate the location of the acoustic source. By accumulating direction information from various vehicle locations, the acoustic source localization is achieved using extended Kalman filter. The proposed method can provide a reliable estimation of the direction and location of the acoustic source, even under for a noisy acoustic signal. Experimental results demonstrate the performance of the proposed acoustic source localization method in a real sea environment.

청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발 (Development of sound location visualization intelligent control system for using PM hearing impaired users)

  • 조용현;최진영
    • 융합보안논문지
    • /
    • 제22권2호
    • /
    • pp.105-114
    • /
    • 2022
  • 본 논문은 퍼스널 모빌리티(Personal Mobility, PM)를 이용하는 청각 장애인에게 소리가 발생하는 도래각(Direction of Arrival, DOA)을 시각화하는 지능형 제어 시스템을 제시하며 도로에서 발생하는 경보음, 크락션 등 소리로 인한 위험한 상황들을 인지하고 예방하고자 한다. 소리 위치 추정 방법은 GCC-PHAT(Generalized Cross-Correlation Phase Transform) 기반 도착 지연 시간(Time Difference of Arrival, TDOA)을 특징으로 갖는 머신러닝 분류 모델을 사용한다. 도로 상황을 재현한 실험 환경에서 각각 풍속 0, 5.8, 14.2, 26.4km/h의 조건에 따라 학습 데이터를 추출한 후 학습한 4가지 분류 모델들을 Grid search cross validation으로 비교하며 성능이 가장 우수한 MLP(Multi-Layer Perceptron) 모델을 알고리즘으로 적용하였다. 최종적으로 바람이 발생하였을 때 제안된 알고리즘이 평균 90.7%의 정확도를 나타내었으며, 이는 기존의 일반적인 소리 위치 추정기법보다 평균 7.6-11.5% 정도의 성능 향상을 보이는 것이다.

정준형 상관 분석을 이용한 적응 시간 지연 추정에 관한 연구 (An Adaptive Time Delay Estimation Method Based on Canonical Correlation Analysis)

  • 임준석;홍우영
    • 한국음향학회지
    • /
    • 제32권6호
    • /
    • pp.548-555
    • /
    • 2013
  • 음원 위치 추정은 여러 방면에서 쓰임이 있는 응용 기술이다. 음원의 위치를 추정하기 위한 기본 기법 중에는 시간 지연 추정 기법이 있다. 이 기법에선 음원의 위치를 추정하기 위해서 두 개 또는 그 이상의 수신기에 들어오는 신호간의 상대적 시간 지연을 알아내야 한다. 시간 지연 추정 기법에는 GCC (Generalized Cross-Correlation) 대표적이지만, 최소 고유치에 대응하는 고유 벡터를 이용하는 방법도 많이 쓰인다. 이 방법은 최소 고유치에 해당하는 고유벡터를 이용한다. 최소 고유치에 대응하는 고유 벡터를 이용하는 방법은 낮은 신호 대 잡음비 환경에서나 상관도가 있는 잡음환경에서, 최소 고유치에 해당하는 고유 벡터를 추정하는데 어려움이 있어서, 성능이 떨어진다. 본 논문에서는 정준형 상관 분석 (CCA)를 이용한 새 기법을 제안한다. 이 방법은 일반 고유치 분해 중에서 최대 고유치에 대응하는 고유벡터를 사용한다. 따라서 추정에 사용하는 고유벡터는 시간 지연 추정에 필요한 정보가 충분히 들어있다. 본 논문에서는 여러 서로 다른 신호 대 잡음비 환경 하에서 상관도가 없는 경우와 상관도가 있는 경우의 잡음 에 대해 비교 모의실험을 하였고, 이 비교 실험을 통하여 얻는 데이터를 통해서 제안한 CCA 기반 알고리즘이 기존 최소 고유치에 해당하는 고유벡터를 사용하는 시간 지연 추정법의 성능보다 더 우수하다는 것을 보인다.