• Title/Summary/Keyword: GC analysis

Search Result 2,178, Processing Time 0.039 seconds

Biosynthesis of (R)-(-)-1-Octen-3-ol in Recombinant Saccharomyces cerevisiae with Lipoxygenase-1 and Hydroperoxide Lyase Genes from Tricholoma matsutake

  • Lee, Nan-Yeong;Choi, Doo-Ho;Kim, Mi-Gyeong;Jeong, Min-Ji;Kwon, Hae-Jun;Kim, Dong-Hyun;Kim, Young-Guk;Luccio, Eric di;Arioka, Manabu;Yoon, Hyeok-Jun;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.296-305
    • /
    • 2020
  • Tricholoma matsutake is an ectomycorrhizal fungus, related with the host of Pinus densiflora. Most of studies on T. matsutake have focused on mycelial growth, genes and genomics, phylogenetics, symbiosis, and immune activity of this strain. T. matsutake is known for its unique fragrance in Eastern Asia. The most major component of its scent is (R)-(-)-1-octen-3-ol and is biosynthesized from the substrate linoleic acid by the sequential reaction of lipoxygenase and peroxide lyase. Here, we report for the first time the biosynthesis of (R)-(-)-1-octen-3-ol of T. matsutake using the yeast Saccharomyces cerevisiae as a host. In this study, cDNA genes correlated with these reactions were cloned from T. matsutake, and expression studies of theses genes were carried out in the yeast Saccharomyces cerevisiae. The product of these genes expression study was carried out with Western blotting. The biosynthesis of (R)-(-)-1-octen-3-ol of T. matsutake in recombinant Saccharomyces cerevisiae was subsequently identified with GC-MS chromatography analysis. The biosynthesis of (R)-(-)-1-octen-3-ol with S. cerevisiae represents a significant step forward.

Evaluation of Environmental Mutagens-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Kim, Soung-Ho;Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.194-194
    • /
    • 2003
  • The International Agency for Research on Cancer (IARC, 1989) has classified whole diesel exhaust as probably carcinogenic to humans. Diesel exhaust particulate matter (DPM) adsorbs different chemical substances including PAHs and nitroarenes. DPM is emphasized because it is a major component of diesel exhaust, it is suspected of contributing to a health hazard. Diesel exhaust is a complex mixture of carbon particles and associated organics and inorganics, and it is not known what fraction or combination of fractions cause the health effects [cancer effects, noncancer effects (respiratory tract irritation/inflammation and changes in lung function)] that have been observed with exposure to diesel exhaust. In order to identify which chemical classes are responsible for the majority of the observed biological activities, we performed a particular biological/chemical analysis. Respirable particulate matter (PM2.5: <2.5mm) was collected from diesel engine exhaust using a high-volume sampler equipped with a cascade impactor. Particulate oganic matter was extracted by the dichloromethane/sonication method and the crude extract was fractionated according to EPA recommended procedure into seven fractions by acid-base partitioning and silica gel column chromatography. We examined genotoxic potentials of diesel exhaust particulate matter using novel genotoxicity tests, which are rapid, simple and sensitive methods for assessing DNA-damage at the DNA and chromosomal level (comet assay, in vitro MN test and Ames test). Higher genotoxic potency was observed in non polar fractions and several PAHs were detected by GC-MS, such as 1,2,5,6 dibenzanthracene, chrysene, 1,2-benzanthracene, phenanthrene and fluoranthene.

  • PDF

Evaluation of Exposure to Pyrethroid Pesticides according to Sprayer Type using Biological Monitoring (생물학적 모니터링을 이용한 분무기 형태에 따른 피레스로이드 농약 노출량 평가)

  • Song, Jae Seok;Choi, Hong Soon;Yu, Ho Young;Park, Byung Gon;Kwon, Daeho
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.300-304
    • /
    • 2016
  • The aim of this study were to evaluate the exposure level of pyrethroid pesticide according to spraying machine type. The urinary metabolites of pyrethroid pesticide in apple farmers were analyzed to determine the exposure level of pyrethroid pesticide. The result shows that, the spraying volume was greater in SS sprayer group than in power sprayer group. But multi variate analysis which adjust spraying volume and field area, there were no difference of urinary metabolites between two sprayer machine. To make more accurate model of pesticide exposure, the factors influencing pesticide exposure should be determined and further study should be done.

Analysis for Cyclodextrins to Entrap with Hexanal using Electronic Nose (전자코를 이용한 헥사날과 싸이클로덱스트린의 결합 분석)

  • Youn, Aye-Ree;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The effectiveness of cyclodextrin(CD) on binding and/or entrapping hexanal in model solution was investigated. The types and concentration of CDs for entrapping hexanal were studied using electronic nose, which composed of metal oxide sensor or was based on GC with surface acoustic wave sensor. ${\alpha}-CD$ was the most effective for lowering headspace concentration of hexanal in model solution. As concentration of CD increased, hexanal concentration in the headspace decreased significantly. Addition of 5% ${\beta}-CD$ to hexanal in model system resulted in 86% reduction of hexanal in the headspace. There was no difference between control and treatment at the initial stage of binding CD with hexanal while reduction of hexanal in the headspace was found during storage time. This could be estimated by electronic nose.

Measurements of Gases Emissions form Agricultural Soils and Their Characteristics with Chamber Technique: Emissions of NO and $N_2O$ (챔버를 이용한 농작지로부터의 기체배출량의 측정과 배출특성연구: 일산화질소(NO)와 아질산가스($N_2O$)의 배출량산정)

  • 김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2001
  • During the growing season from June to August, 2000, the soil NO and $N_2$O fluxes were measured to elucidate characteristics of soil nitrogen emissions from different types of intensively managed agricultural soils at outskirts of Kunsan City, located in the western inland of Korea, Flux measurements were made using a closed chamber technique at two different agricultural fields; one was made from upland field, and the other from rice paddy field. The flux data from upland field were collected for both the green onion and soybean field. Concentrations of NO and $N_2$O inside a flux chamber ar 15 minute sampling interval were measured to determine their soil emissions. Either polyethylene syringes of teflon air bags were used for gas samples of $N_2$O and NO. The analysis of NO and $N_2$O was made using a chemiluminesence NO analyzer and GC-ECD, respectively no later than few hours after sample collection at laboratory. The gas fluxes were varied more than one standard deviation around their means. Relatively high soil gas emissions occurred in the aftermoon for both NO and $N_2$O. A sub-peak for $N_2$O emission was observed in the morning period, but not in the case of NO. NO emissions from rice paddy field were much less than those from upland site. It seems that water layer over the rice paddy field prevents gases from escaping from the soil surface covered with were during the irrigation and acts as a sink of these gases. The NO fluxes resulted from these field experiments were compared to those from grass soil and they were found to be much higher. Diurnal and daily variations of NO and $N_2$O emission were discussed and correlated with the effects of nitrogen fertilizer application on the increase of the level of soil nitrogen availability.

  • PDF

Production of Oleamide, a Functional Lipid, by Streptomyces sp. KK90378

  • Kwon, Jeong-Ho;Hwang, Sung-Eun;Han, Jae-Taek;Kim, Chang-Jin;Rho, Jung-Rae;Shin, Jong-Eon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1018-1023
    • /
    • 2001
  • Oleamide (cis-9-octadecenamide) is endogenous primary amide of fatty acid that is produced in small amounts in animal brains. It is known to induce sleep and to lower temperature by destroying the lipid plasma membrane structure of cells, thereby disclosing gap junction channels. To develop a new biological production method for oleamide, a screening program was conducted to isolate a microorganism producing oleamide. Among 1,500 soil microorganisms tested, KK90378 exhibited a potent positive reaction with Dragendoff`s reagent, used to detect the primary amide of oleamide. KK90378 was identified as a Streptomyces species based on cultural and morpohological characteristics, the presence of diaminopimelic acid in the cell wall, and the sugar patterns for the whole-cell extrat. Streptomyces sp. KK90378 produced oleamide 3 days after culture at $28^{\circ}C$, pH 7.2 A series of purification steps, including hexane extraction, silica gel column, and preparative thin layer chromatographies, were performed for the purification of oleamide. A spectrophotometric analysis using $^1H$, $^13C$-NMR, and GC-MS confirmed that the chemical structure of the purified oleamide was identical to that of authentic oleamide.

  • PDF

Structure Determination of Antifungal KRF-001 Produced by Bacillus subtilis subsp. krictiensis (Bacillus subtilis subsp. krictiensis가 생산하는 항진균 물질 KRF-001의 구조 결정)

  • 김성기;이남경;정태숙;김영국;최진자;복성해
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.598-603
    • /
    • 1991
  • An antifungal mixture of six members (component A to F), KRF-001 produced by Bacillzts subtilis subsp. krictiensis was isolated from the fermentation broth. Molecular weight of component A to F was determined by FAB-MS to be 1042, 1056, 1056, 1070, 1070 and 1084 respectively. Various instrumental analyses (amino acid analysis, GC-MS, $^1H-NMR, ^1HH$ COSY NMR) revealed that the mixture was a homologous cyclic peptide composed of each one mole of glutamine, proline, tyrosine, serine, unusual $\beta$-amino acid and three moles of asparagine. The structural differences of component A to F were found in carbon number and terminal structure of the unusual $\beta$-amino acid. After determination of the sequence and stereochemistry of those amino acids, the tentative structure of KRF-001 was determined.

  • PDF

Purification and Characterization of Anabaena flos-aquae Phenylalanine Ammonia-Lyase as a Novel Approach for Myristicin Biotransformation

  • Arafa, Asmaa M.;Abdel-Ghany, Afaf E.;El-Dahmy, Samih I.;Abdelaziz, Sahar;El-Ayouty, Yassin;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.622-632
    • /
    • 2020
  • Phenylalanine ammonia-lyase (PAL) catalyzes the reversible deamination of phenylalanine to cinnamic acid and ammonia. Algae have been considered as biofactories for PAL production, however, biochemical characterization of PAL and its potency for myristicin biotransformation into MMDA (3-methoxy-4, 5-methylenedioxyamphetamine) has not been studied yet. Thus, PAL from Anabaena flos-aquae and Spirulina platensis has been purified, comparatively characterized and its affinity to transform myristicin was assessed. The specific activity of purified PAL from S. platensis (73.9 μmol/mg/min) and A. flos-aquae (30.5 μmol/mg/min) was increased by about 2.9 and 2.4 folds by gel-filtration comparing to their corresponding crude enzymes. Under denaturing-PAGE, a single proteineous band with a molecular mass of 64 kDa appeared for A. flos-aquae and S. platensis PAL. The biochemical properties of the purified PAL from both algal isolates were determined comparatively. The optimum temperature of S. platensis and A. flos-aquae PAL for forward or reverse activity was reported at 30℃, while the optimum pH for PAL enzyme isolated from A. flos-aquae was 8.9 for forward and reverse activities, and S. platensis PAL had maximum activities at pH 8.9 and 8 for forward and reverse reactions, respectively. Luckily, the purified PALs have the affinity to hydroaminate the myristicin to MMDA successfully in one step. Furthermore, a successful method for synthesis of MMDA from myristicin in two steps was also established. Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to track the product formation.

Health Risk Assessment of Aldehydes and VOCs in the Activities Space of Young Children -Focused on Child-care Facilities and Indoor Playgrounds- (어린이 주요 활동 공간의 휘발성 유기화합물 노출로 인한 건강 위해성 평가 -보육시설 및 실내놀이터 중심으로-)

  • Yang, Ji-Yeon;Kim, Ho-Hyun;Yang, Su-Hee;Kim, Sun-Duk;Jeon, Jun-Min;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.57-68
    • /
    • 2010
  • This study assessed the lifetime cancer and non-cancer risk of aldehydes and volatile organic compounds exposure of young children at child-care facilities and indoor playgrounds in Korea. The samples were collected at various children's facilities (40 day-care houses, 42 child-care centers, 44 kindergartens, and 42 indoor playgrounds) in summer (Jul~Sep, 2007), winter (Jan~Feb, 2008) and Spring (Mar~Apr, 2008) periods, and analyzed by GC-MS. We estimated the lifetime excess cancer risks (ECRs) of formaldehyde, acetaldehyde, benzene, chloroform, CCI4 and tetrachloroethylene, and the hazard quotients (HQs) of Non-carcinogens (toluene, xylene, benzaldehyde and formaldehyde). Formaldehyde evaluated both cancer and non-cancer risk. The average ECRs of formaldehyde for young children were $1\times10^{-4}{\sim}1\times10^{-5}$ level in all facilities. HQs of four non-carcinogens did not exceed 1.0 for all subjects in all facilities.

A Proposal of Standard Method for the Analysis of Total Petroleum Hydrocarbons (TPHs) in Marine Sediments and Biota (해양환경시료(해저퇴적물과 해양생물)에 축적된 석유계총탄화수소(TPHs) 분석에 대한 공정시험기준 제안)

  • Kim, Chang-Joon;Hong, Gi-Hoon;Jeon, Ji-Yeun;Kim, Suk-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.249-262
    • /
    • 2010
  • Regulatory test method for Total Petroleum Hydrocarbons (TPHs) in the marine sediment and biota has not still been established even though TPHs are one of the major pollutants in marine environment. Based on the Korean Soil Standard Method (SSM) for TPHs, we considered a new treatment method for determining TPHs in marine environmental samples by using a Gas chromatography coupled with Mass spectrometric detector. We suggested an improved recovery test for quality control procedures and introduced analytical procedures of removing sulfur, polar organic materials, water and saponification for removing neutral lipids in marine bottom sediments and biota.