• Title/Summary/Keyword: GAS Boiler

Search Result 362, Processing Time 0.034 seconds

[ $CO_2$ ] Recovery from LNG-fired Flue Gas Using a Multi-staged Pilot-scale Membrane Plant (파일럿규모의 다단계 막분리 공정을 통한 LNG 연소 배가스로부터 이산화탄소의 회수연구)

  • Kim, Jeong-Hoon;Choi, Seung-Hak;Kim, Beom-Sik;Lee, Soo-Bok;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.197-209
    • /
    • 2007
  • In this study, a multi-staged pilot-scale membrane plant was constructed and operated for the separation of $CO_2$ from LNG-fired boiler flue gas of 1,000 $Nm^3/day$. The target purity and recovery ratio of $CO_2$ required for the pilot plant were 99% and 90%, respectively. For this purpose, we previously developed the asymmetric polyethersulfone hollow fibers and evaluated the effects of operating pressure and feed concentration of $CO_2$ on separation performance[1,2]. The permeation data obtained were also analyzed in relation with the numerical simulation data using counter-current flow model[3,4]. Based on these results, we designed and prepared the demonstration plant consisting of dehumidification process and four-staged membrane process. The operation results using this plant were compared with the numerical simulation results on multi-staged membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery ratio of $CO_2$ in the final stage permeate stream were ranged from $95{\sim}99%$ and $70{\sim}95%$, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for $CO_2$ recovery from flue gas.

Preliminary Experimental Study for Water Recovery and Particulate Matter Reduction through a Hybrid System that Combines Exhaust Cooling and Absorption from Ships (선박배출 배기냉각과 흡수식이 결합된 하이브리드 시스템을 통한 물 회수 및 미세먼지 저감을 위한 기초실험연구)

  • Youngmin Kim;Donggil Shin;Younghyun Ryu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1252-1258
    • /
    • 2022
  • The exhaust gas from the marine engines include a quantity of water vapor and particulate matter. The total particulate matter includes filterable particulate matter (FPM) and condensable particulate matter (CPM) that condense after releasing into the atmosphere. The portion of CPM is higher than that of FPM that is removable through the filter before discharging. An experimental setup for waste heat and water recovery and removal of CPM in the exhaust gas was tested using an industrial gas boiler in the laboratory. The water and CPM in the exhaust gas were removed through the first stage of cooling method and further removed through the second stage of absorption method. The efficiencies of water recovery were 73% after the first stage of cooling method and 90% after the second stage of absorption method. At the same time, the CPM was removed by 80-90% through the processes. The waste heat recovered could be used to process heat, and the water recovered could be used to process water in the ship. Furthermore, the CPM, which is a major source of the particulate matter but not subject to administrative regulation, could be removed effectively.

Study on Fire Hazard Analysis along with Heater Use in the Public Use Facility Traditional Market in Winter (겨울철 다중이용시설인 전통재래시장 난방기구 사용에 따른 화재 위험성 분석에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.583-597
    • /
    • 2014
  • Fire caused by heater has various causes as many as the types of heater. also, lots of damage of human life and property loss are caused, since annually continuous fire accident by heater in traditional market is frequently occurring. There are not many cases of fire due to heater in most of residential facilities such as general house, apartments, etc., because they are supplied with heating boiler, however the restaurant, store and office of the market, sports center, factory, workplace, etc. still use heater, e.g. oilstove, electric heater, etc., so that they are exposed to fire hazard. Also, when investigating the number of fire due to heater, it was analyzed to occur in order of home boiler, charcoal stove, oilstove, gas heater/stove, electric stove/heater, the number of fire per human life damage was analyzed in order of gas heater/stove, oil heater/stove, electric heater/stove, briquette/coal heater. Also, gas and oil related heater were analyzed to have low frequency, however, with high fire intensity. Therefore, this research aimed at considering more scientific fire inspection and identification approach by reenacting and reviewing fire outbreak possibility caused by combustibles' contact and conductivity under the normal condition and abnormal condition in respect of ignition hazard, i.e. minimum ignition temperature, carbonization degree and heat flux along with it, due to oilstove and electric stove, which are still frequently used in public use facility, traditional market, and, of which actual fire occurrence is the most frequent. As the result of reenact test, ignition hazard appeared very small, as long as enough heat storage condition is not made in both test objects(oilstove/electric stove), however carbonization condition was analyzed to be proceeded per each part respectively. Eventually, transition to fire is the ignition due to heat storage, so that it was analyzed to ignite when minimum heat storage temperature condition of fire place is over $500^{\circ}C$. Particularly, in case of quartz pipe, the heating element of electric stove, it is rapidly heated over the temperature of $600^{\circ}C$ within the shortest time(10sec), so that the heat flux of this appears 6.26kW/m2, which was analyzed to result in damage of thermal PVC cable and second-degree burn in human body. Also, the researcher recognized that the temperature change along with Geometric View Factor and Fire Load, which display decrease of heat, are also important variables to be considered, along with distance change besides temperature condition. Therefore, the researcher considers that a manual of careful fire inspection and identification on this is necessary, also, expects that scientific and rational efforts of this research can contribute to establish manual composition and theoretical basis on henceforth fire inspection and identification.

Combustion characteristics of two imported Indonesia coals as a pulverized fuel of thermal power plants (인도네시아산 발전용 수입 석탄 2종의 연소특성 비교 평가)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • Combustion reactivity and thermal behavior of two imported coals used as a pulverized fuel of commercially thermal power plant were investigated by thermogravimetric analysis (TGA) and large scale test furnace of 200 kg/hr. TGA results showed that combustion efficiency of high moisture coal has lower than reference coal due to the slow combustion completion rate although it has the low ignition temperature, and activation energies of high moisture coal with 79 kJ/mol for overall combustion was higher than reference coal of 53 kJ/mol. Test furnace results ascertained that flame of black band of high moisture coal during the combustion in boiler broke out compared to reference coal and then it becomes to unburned carbon due to the less reactivity and combustion rate. But, Blending combustion of high moisture coal with design coal of high sulfur are available because sulfur content of high moisture coal was too low to generate the low SOx content in flue gas from boiler during the combustion. The ash analysis results show that it was not expected to be associated with slagging and fouling in pulverized coal fired systems due to the low alkali metal content of $Na_2O$ and $K_2O$ compared to bituminous coal.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

Multi-stage Membrane Process for $CO_2$ Separation from Flue Gas Using PES Hollow Fiber Membrane Modules (폴리이서설폰 중공사모듈을 이용한 연소배가스로부터 이산화탄소 분리회수를 위한 다단계 막분리공정 연구)

  • Choi Seung-Hak;Kim Jeong-Hoon;Kim Eeom-Sik;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.310-319
    • /
    • 2005
  • This paper describes the preliminary study on the development of multi-stage membrane demonstration plant for removal of carbon dioxide from flue gas stream being emitted from LNG boiler in thermal power generation plant. The prerequisite requirement is to design and develop the membrane process producing a $99\%\;CO_2$ with $90\%$ recovery from LNG flue gas of 1,000 $Nm^3$/day. Asymmetric polyethersulfone hollow fiber membranes and membrane modules developed in this laboratory[1] were used in this study. Using the permeation data for the hollow fiber membranes, modelling on the membrane module and multi-stage membrane process was done to meet the requirement condition of the process design. The effects of the operating pressure of feed and permeate side and feed concentration on $CO_2$ purity and recovery were investigated experimentally with the developed hollow fiber modules. These experimental results matched well with theoretical modelling results.

Sensing Characteristics of $SnO_{2}$ type CO sensors for combustion exhaust gases monitoring (연소배가스 모니터링을 위한 $SnO_{2}$계 CO센서의 검지특성)

  • Kim, I.J.;Han, S.D.;Lim, H.J.;Son, Y.M.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.369-375
    • /
    • 1997
  • $V_{2}O_{5}/ThO_{2}/Pd$-doped $SnO_{2}$ sensor has a good selectivity and stability to CO at high sensor temperature of about $500^{\circ}C$, and shows rapid response. In particular, many kinds of interference gases, such as $NO_{x}$, $C_{3}H_{8}$, $CH_{4}$ and $SO_{2}$ have been found to give only a slight influence on the sensor selectivity to CO gas sensitivity by doped $V_{2}O_{5}$ (3.0 wt.%). For the sensor we used well-known thick film technological route with $V_{2}O_{5}$(3.0 wt.%), Pd(1.0 wt.%) and $ThO_{2}$(l.5 wt.%) as catalytic materials. In the case of mixed $NO_{x}$-CO gases, as combustion exhaust gas, only CO detection by $SnO_{2}$ type semiconductor sensor is generally very difficult because of $NO_{x}$ interference. The developed sensors can use to measure the exhausting gas of the automobile or the boiler for the Air-to-Fuel ratio control.

  • PDF

Development of a Model Instrument of Thermal Power Plant for Understanding of Air Pollutant Generation

  • Yamamoto, Mariko;Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • In order to deal with current environmental issues and their backgrounds, further development of current teaching methods and tools are essential. The result of questionnaire performed in this study indicates that the effect and the change of the perception of power generation in Japan after the great disaster of East Japan have caused many students (both high school and college students) to become interested in the energy situation. In the present study, we made an attempt to develop a model instrument of a thermal power plant that can be applied as a teaching tool for understanding of air pollutant forming as well as power generation. Our novel model tool consists of a body (30 cm width, 21 cm depth, and 41 cm height), a combustion chamber, two motors, a boiler, a voltmeter, and a chimney for measurement of exhaust gas. Using our novel hand-made power plant, we carried out some model experiments with learners (i.e. high school and college students). Through model experiments, students can be experienced not only about power generation but also about generation of air pollutants. In order to estimate the applicability of our novel instrument as an educational tool, we carried out the questionnaires before and after model experiments. More than 80% of educatees reported that it was very useful as a teaching tool for energy and environmental education. The results of questionnaires indicated that learners achieved a very deep understanding of the principles of power generation and the forming of air pollutants.

CO2 Emission Characteristics of Bunker C Fuel Oil by Sulfur Contents (C 중유의 황 함유량에 따른 CO2 배출 특성)

  • Lim, Wan-Gyu;Doe, Jin-Woo;Hwang, In-Ha;Ha, Jong-Han;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.368-377
    • /
    • 2015
  • Bunker C fuel oil is a high-viscosity oil obtained from petroleum distillation as a residue. The sulfur content of bunker C fuel oil is limited to 4.0% or even lower to protect the environment. Because bunker C fuel oil is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, carbon dioxide is emitted as a result of combustion. The objective of this study is to investigate $CO_2$ emission characteristics of bunker C fuel oil by sulfur contents. Calorific values and carbon contents of the fuels were measured using the oxygen bomb calorimeter method and the CHN elemental analysis method, respectively. Sulfur and hydrogen contents, which were used to calculate the net calorific value, were also measured and then net calorific values and $CO_2$ emission factors were determined. The results showed that hydrogen content increases and carbon content decreases by reducing sulfur contents for bunker C fuel oil with sulfur contents less than 1.0%. For sulfur contents between 1.0% and 4.0%, carbon content increases as sulfur content decreases but there is no evident variation in hydrogen content. Net calorific value increases by reducing sulfur contents. $CO_2$ emission factor, which is calculated by dividing carbon content by net calorific value, decreases as sulfur content decreases for bunker C fuel oil with sulfur contents less than 1.0% but it showed relatively constant values for sulfur contents between 1.0% and 4.0%.