• Title/Summary/Keyword: GAP Element

Search Result 741, Processing Time 0.029 seconds

The Research of Design Development for Strengthening Competitiveness of Domestic Medical Instrument Industry -Focused on C-Arm Surgical X-Ray Design- (국내 의료기기산업 경쟁력 강화를 위한 디자인개발에 관한 연구 -이동형 영상진단기기 디자인을 중심으로-)

  • Han, Il-Woo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.51-60
    • /
    • 2004
  • The medical instrument industry which is one of the high value added industry has been neglected on the various system and political support because it has been recognized as an unknown field to the public although it is the very easy-approaching field for the export market that minimize a technological gap between advanced country and Korea. Especially, the product design that is very important element for the efficient medical treatment and the psychological stabilization of patient is a typical field of lack of investment and support by the unconcern and lack of understanding of design. Therefore this research suggests the current problem of design with the general inquiry of internal and external market situation and domestic medical instrument industry and also it has the conclusion of an alternative proposal for the solution with the design development processing of a moving type-image diagnostic equipment. We will emboss the importance of design competitiveness, suggest the model and basic data to the medical instrument company that starts later, and be a role of inspiration for the lasting investible desire with this research.

  • PDF

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

Design of Levitation Magnet with Thermal Analysis (열해석을 이용한 자기부상자석의 설계)

  • Bae, Duck-Kweon;Sung, Ho-Kyung;Yoon, Yong-Soo;Bae, Jun-Han;Jho, Jeong-Min;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1185-1186
    • /
    • 2007
  • The UTM-01 developed in 1998 was the first maglev vehicle in Korea for the urban transit maglev (UTM) system. Through the improvement of UTM-01 and development of UTM02, the commercialization of the UTM system is being prepared now. In order to prepare for the commercialization of maglev, it is necessary that an optimal design of the levitation magnet should be provided for the safe operation of the vehicle. The levitation force is formed through the function of magnetic flux density on the top of magnet poles and gap between magnet pole and guide rail. To generate a magnetic field that is high enough to levitate the vehicle, ferromagnetic materials, such as pure iron for magnet pole and SS400 for guide rail, were used. The heat generated by $I^2R$ loss of magnet conductor makes the thermal convection on the surface of magnet including coil and poles. As these two characteristics are nonlinear phenomena, this paper deals with the nonlinear analysis on the magnetic and thermal properties of the U-type levitation magnet by using 3-D finite element method (FEM). Base on the analysis results, a small scale U-type magnet was designed, manufactured, and tested and it was verified that the magnet manufactured was satisfactory to all the design specifications.

  • PDF

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(II) - Welding Properties of Butt Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(II) - 맞대기 용접 특성 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Song, Moo-Keun;Park, Seung-Ha
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • Recently, as titanium and titanium alloys are being increasingly used in wide areas, there are on-going researches to obtain high quality weld zone. In particular, growing interest is being drawn to laser welding, which involves low heat input and large aspect ratio in various welding processes and can facilitate shield in atmospheric condition compared with electron beam welding. The first report covered the analysis of embrittlement by the bead color of weld zone through quantitative analysis of oxygen and nitrogen and measurement of hardness as basic experiment to apply laser welding to titanium. Results indicated that the element that affect embrittlement the most was nitrogen, and as embrittlement and oxygenation go on, bead color changed to silver, gold, brown, blue and gray. This study performed butt welding of pure titanium and STS304 by using 1kW CW Nd:YAG laser, and to find out basic physical properties, evaluated welding performance by laser output, welding speed, root gap and misalignment etc, and examined mechanical properties through tensile stress and Erichsen test. The reason particles of pure titanium welded metal and HAZ are greater than STS304 is because they are pure metal and do not include many impure elements that work as nuclei in case of resolidification, thus becoming coarse columnar crystals eventually. In addition, the reason STS304 requires more energy during welding than pure titanium is because the particle size of base metal is smaller.

Design of Rotating Moving-Magnet-Type VCM Actuator for Miniaturized Mobile Robot (소형 이동 로봇을 위한 회전형 보이스 코일 구동기 개발)

  • Shin, Bu Hyun;Lee, Seung-Yop;Lee, Kyung-Min;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1529-1534
    • /
    • 2013
  • A voice coil actuator with a rotating moving magnet has been developed for a miniaturized mobile robot. The actuator has simple structure comprising a magnet, a coil, and a yoke. Actuator performance is predicted using a linearized theoretical model, and dynamic performance based on the air-gap between the magnet and the coil is predicted using motor constant and restoring constant obtained through finite element simulations. The theoretical model was verified using a prototype with 60 Hz resonance and 80 Hz bandwidth. We found that an input of 1.5 V can make the actuator rotate by $20^{\circ}$ statically. The driving configuration of the proposed actuator can be simplified because of its implementation of open-loop control.

Spatial Analysis on Mismatch Between Particulate Matter Regulation Services Supply and Demand in Urban Area - A Case Study of Suwon - (도시녹지 미세먼지 조절 서비스 수요와 공급의 공간적 차이 분석 - 수원시를 대상으로 -)

  • Kang, Da-In;Kwon, Hyuk-Soo;Choi, Tae-Young;Park, Chan;Kim, Sung-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.57-69
    • /
    • 2021
  • Urban green spaces supply ecosystem services (ESs), which are consumed by city residents and generate demand, to improve air quality. It is important to determine supply and demand for ESs and reduce the gap for efficient management. This study proposed a method to use the concept of supply and demand for ESs in the decision-making process for urban planning or management. PM10 concentrations were converted to weight for demand assessment on PM10 reduction, and PM10 absorption capacity of all green spaces including the forests, and that of urban green spaces excluding forests, was calculated for each supply assessment. The differences in the calculated supply and demand were analyzed to derive the mismatched regions in Suwon. As a result, regions with big forested areas showed sufficient supply, indicating that the degree of mismatch among administrative neighborhoods (dong) varied greatly depending on whether they had a forest. An analysis of only urban green spaces showed that all neighborhoods lacked supply. Forests with high PM10 absorption capacity had a great effect, but urban green spaces can be considered a key element in reducing PM10 in daily life. Considering the mismatch of supply and demand, spatial distribution, and population distribution, it is possible to prioritize the supply of urban green spaces to reduce PM10 and, furthermore, support decision making for priority zones subject to forest conservation and designation and cancellation of green spaces, which gives significance to this study.

Earthquake Response Analysis for Three-Story Building with Reinforced Concrete Shear Walls (3층 철근콘크리트 전단벽 구조물의 지진응답해석)

  • Rhee, Inkyu;Lee, Eun-Haeng;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.103-110
    • /
    • 2021
  • A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.