• Title/Summary/Keyword: GAIT PARAMETER

Search Result 63, Processing Time 0.024 seconds

The Change of Gait Characteristics and FAP in Patients with Chronic Unilateral Stroke (편마비 환자의 보행 특성과 기능적 보행지수 변화)

  • Kim, Soo-Min
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Purpose : Improved walking is a common goal after stroke. Although the neurodevelopmental intervention(PNF) is the most widely used approach in the walking training of hemiparetic subjects. There is little neurophysiological evidence for its presumed effects on gait symmetry and facilitation of paretic muscles during the therapeutic intervention. The study, therefore, investigated the immediate effects of gait entrainment by a PNF techniques. Methods : Included persons with stroke who were living in the community. Sixteen subjects were assigned to the experimental group participated in a measures design that evaluated the subjects with pre-treatment, post-treatment(8 weeks). Temporal-spatial parameter of gait were analysed for using the computerized GAITRite system. Intervention : Training for the experimental group was carried out 3 times a week for 8 weeks. The training sessions were comprised of 50 minutes of walking with pattern and techniques in PNF. Results : The experimental group had improvements in the functional walking ability after 8 weeks treatment and Post-treatment test scores were more significant than the pre-treatment score. The treatment group demonstrated significantly post-treatment test improvement in gait velocity, cadence and FAP. Post-treatment test scores were more significant than the pre-treatment score(p<0.05). Conclusion : The results of this study showed that the PNF exercise intervention can improve functional gait ability. This study provides evidence for the efficacy of PNF treatment at improving locomotor function in chronic stroke.

  • PDF

Correlation between Pediatric Balance Scale and Gait Parameter in Children with Spastic Diplegic Cerebral Palsy (경직성 양하지 뇌성마비 아동의 소아균형검사와 보행변수 간의 상관관계)

  • Ko, Myung-Sook;Park, So-Yeon;Lee, Nam-Gi
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2016
  • The Pediatric Balance Scale (PBS) was balance measurement equipment for school-age children with mild to moderate motor impairments. The aims of this study are to examine the correlation between PBS and spatiotemporal gait parameter and to identify the walking function with cerebral palsy through balance scale. The PBS consists of 14 items such as sitting of standing, standing to sitting, transfers, standing unsupported, standing on one foot, turning 360 degrees, turing to look behind, etc., and the spatiotemporal parameters include walking speed, stride length, step length, step width, cadence, double-limb support. All subjects were independently ambulatory children with spastic diplegic cerebral palsy, and they were assessed on PBS and spatiotemporal gait parameters by an experienced pediatric physical therapist. Pearson's correlation coefficient was used to assess the correlation between PBS and spatiotemporal gait parameters, and the level of significance was set at ${\alpha}$ = 0.05. Total score of PBS(r=.49~.58), standing to sitting(r=.48~.60), turning to look behind(r=.47~.53), and pick up object(r=.52~.69) were positively correlated with walking speed, stride length, step length, and cadence. Most items of the PBS were negatively correlated with double-limb support(r=-.48~-.92). These findings suggest that the pediatric balance scale can be applied to estimate gait function level for children with spastic diplegic cerebral palsy.

Gait Characteristic in a Stroke Patient with an Intact Corticospinal Tract and Corticoreticular Pathway: A Case Study

  • Yeo, Sang Seok;Cho, In Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.73-77
    • /
    • 2018
  • Purpose: The prefrontal lobe, supplementary motor area, cerebellum, and basal ganglia are activated during gait. In addition, gait is controlled by nerves, such as the corticospinal tract (CST) and corticoreticular pathway (CRP). In this study, the presence of an injury to the CST and CRP was identified by diffusion tensor imaging and the characteristics of the gait pattern were investigated according to inferior cerebral artery infarction. Methods: One patient and six control subjects of a similar age participated. A 69-year-old female patient had an injury to the left basal ganglia, insular gyrus, corona radiata, dorsolateral prefrontal cortex, and postcentral gyrus due to an inferior cerebral artery infarction. Diffusion tensor imaging (DTI) data was acquired 4 weeks after the stroke. The kinematic and spatio-temporal parameters of gait were collected using a three-dimensional gait analysis system. Results: On 4 weeks DTI, the CST and CRP in the affected hemisphere did not show injury to the affected and unaffected hemisphere. Gait analysis showed that the cadence of spatio-temporal parameter was decreased significantly in the patient. The angle of the knee joint was decreased significantly in the affected and unaffected sides compared to the control group. Conclusion: The results of diffusion tensor imaging showed that although the patient was evaluated to be capable of an independent gait, the quality and quantity of gait might be reduced. This study could help better understand the gait ability analysis of stroke patients and the abnormal gait pattern of patients with a brain injury.

Validation on the Application of Bluetooth-based Inertial Measurement Unit for Wireless Gait Analysis (무선 보행 분석을 위한 블루투스 기반 관성 측정 장치의 활용 타당성 분석)

  • Hwang, Soree;Sung, Joohwan;Park, Heesu;Han, Sungmin;Yoon, Inchan
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The purpose of this paper is to review the validation on the application of low frequency IMU(Inertial Measurement Unit) sensors by replacing high frequency motion analysis systems. Using an infrared-based 3D motion analysis system and IMU sensors (22 Hz) simultaneously, the gait cycle and knee flexion angle were measured. And the accuracy of each gait parameter was compared according to the statistical analysis method. The Bland-Altman plot analysis method was used to verify whether proper accuracy can be obtained when extracting gait parameters with low frequency sensors. As a result of the study, the use of the new gait assessment system was able to identify adequate accuracy in the measurement of cadence and stance phase. In addition, if the number of gait cycles is increased and the results of body anthropometric measurements are reflected in the gait analysis algorithm, is expected to improve accuracy in step length, walking speed, and range of motion measurements. The suggested gait assessment system is expected to make gait analysis more convenient. Furthermore, it will provide patients more accurate assessment and customized rehabilitation program through the quantitative data driven results.

Gait Pattern Classification using EMG Signal (근전도 신호를 이용한 보행 패턴 분류)

  • 지연주;송신우;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.115-115
    • /
    • 2000
  • A gait pattern classification method using electromyography(EMG) signal is presented. The gait pattern with four stages such as stance, heel-off, swing and heel-strike is analyzed and classified using feature parameters such as zero-crossing, integral absolute value and variance of the EMG signal. The EMG signal from Tibialis Anterior and Gastrocnemius muscles was obtained using the surface electrodes, and low-pass filtered at 10kHz. The filtered analog signal was sampled at every 0.5msec and converted to digital signal with 12-bit resolution. The obtained data is analyzed and classified in terms of feature parameters. Analysis results are given to show that the gait patterns classified by the proposed method are feasible.

  • PDF

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 최적 걸음새에 관한 연구)

  • 공정식;노경곤;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.115-123
    • /
    • 2004
  • This paper deals with the gait optimization of via points on biped robot. ZMP(Zero Moment point) is the most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, leg's trajectory and a desired ZMP trajectory is required, balancing motion is solved by FDM(Finite Difference Method). In this paper, optimal index is defined to dynamically stable walking of a biped robot, and genetic algorithm is applied to optimize gait trajectory and balancing motion of a biped robot. By genetic algorithm, the index of walking parameter is efficiently optimized, and dynamic walking stability is verified by ZMP verification equation. Genetic algorithm is only applied to balancing motion, and is totally applied to whole trajectory. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Application of the Chaos Theory to Gait Analysis (카오스 이론을 적용한 보행분석 연구)

  • Park, Ki-Bong;Ko, Jae-Hun;Moon, Byung-Young;Suh, Jeung-Tak;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.194-201
    • /
    • 2006
  • Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understand how variations in the gait pattern change over time. Eight healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Knee flexion-extension patterns were found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Correlations Among the Berg Balance Scale, Gait Parameters, and Falling in the Elderly (노인에서 Berg 균형 척도, 보행 변수, 그리고 넘어짐과의 관계)

  • Lee, Hyun-Ju;Yi, Chung-Hwi;Yoo, Eun-Young
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.47-65
    • /
    • 2002
  • This study examined the correlations among the Berg Balance Scale, which is a clinical tool used to evaluate balance ability, spatiotemporal parameters of gait, and falling; determined the parameters most closely related to falling; and identified a discriminatory parameter and its predictability. Thirty-four subjects aged 72 to 92 years participated in this study. Following a questionnaire survey about falling, the Berg Balance Scale and spatiotemporal parameters of gait were measured. The results revealed that the incidence of falls increased with aging and an accompanying reduction in the flexion range of motion of the hip joint. The gait characteristics of elderly people who fell easily included a slower walking speed, shorter stride, and longer stance time than other elderly. When the cutoff score was set at 45, the Berg Balance Scale was able to identify correctly those individuals who truly have experience of falling than when the cutoff score was set at 39. But when the cutoff score was set at 39, the scale's specificity identifying correctly those individuals who truly have not experience of falling was higher than at the cutoff score of 45. Therefore, the Berg Balance Scale is an appropriate screening method in a clinical setting for the early detection of elderly people at risk of falling. In conclusion, elderly people with a Berg Balance Scale score. below 45 are the most likely to fall owing to their decreased balance ability.

  • PDF

A Study on the Change of Gait Temporal Parameter and Ankle Joint Moment in Patients with Achilles Tendinitis (아킬레스 건염 환자의 보행 시 고관절, 슬관절 및 족관절 모멘트의 변화에 대한 연구)

  • Yu, Jae-Ho;Lee, Gyu-Chang;Lee, Dong-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5766-5772
    • /
    • 2011
  • This study was to investigate the change of gait temporal parameter and ankle joint moment between patients with achilles tendinitis and healthy people. Thus, the purpose of this study is to clarify biomechanical change of gait in patients with achilles tendinitis and to find risk factor for prevention of achilles tendinitis. We recruited 20 patients with an achilles tendinitis and 20 healthy people. While subjects shuttled 5 times on 13 m distance with comfortable pace, we examined gait function marker with three-dimensional gait analysis system. All subject outstepped center of forceplate during gait and calculated ankle joint moment using software. Obtained data was analyzed using SPSS 12.0 software. In results, we confirmed that patients with achilles tendinitis showed reduction of extension moment in early initial phase and reduction of flexion moment in mid-stance on hip joint. and reduction of flexion moment in early initial phase and reduction of extension moment in late phase on knee joint. And we identified that patients with achilles tendinitis showed reduction of dorsiflexion moment in early stance phase, maximal plantarflexion moment in mid stance phase, and dorsiflexion moment in late stance phase. Thus, there are biomechanical changes on gait in patients with achilles tendinitis compared to healthy people. And, in clinical settings, they should focus on changes of gait in patients with achilles tendinitis. Further study will be undertaken for the biomechanical changes of patietns with achilles tendinitis.

The Relationships among Gait Asymmetry, the Gait Velocity and Motor Function of Lower Extremity in Stroke Patients (뇌졸중 환자의 보행 비대칭성과 속도, 하지 운동 기능과의 상관관계)

  • Nam, Hyoung-Chun;Kim, Seong-Yeol;An, Seung-Heon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 2010
  • Purpose : The present study was to examine the difference and severity of asymmetry in independently ambulating stroke survivors and to establish the association between gait asymmetry, velocity, and the motor function of lower extremity. Methods : The subjects used in this study were 43 subjects with hemiparesis being able to walk independently. Motor function of lower extremity was measured clinically with the Fugl Meyer-Lower /Extremity Assessment. Overground gait velocity and spatia-temporal parameters were collected by the GAITRite system. Results : Thirty(69.77%) patients showed statistically significant temporal asymmetry while 28(65.1%) exhibited statistically significant spatial asymmetry. One-way ANOVA results showed a main effect of temporal asymmetry group(normative, mild, severe) for gait velocity(F=74.129), FM-L/E(F=17.270), swing-stance symmetry(F=66.869, F=13.485, respectively), spatio-temporal asymmetry(F=13.166, F=31.800, respectively) 66, F=31.800, respectively). Gait velocity was negatively associated with temporal asymmetry(r=-.83), spatial asymmetry(r=-.60). Motor function of lower extremity was also associated with temporal asymmetry(r=-.58), and spatial asymmetry(r=-.50). Conclusion : The study attempted to establish the standard assessment of hemiparesis gait symmetry in light of the complex relationship with motor impairment and gait velocity. More future work will need to link the degree of gait asymmetry to clinically relevant outcomes to better establish the clinical significance of such observations.