• Title/Summary/Keyword: GABA subunits

Search Result 22, Processing Time 0.025 seconds

Modulation of the Expression of the GABAA Receptor β1 and β3 Subunits by Pretreatment with Quercetin in the KA Model of Epilepsy in Mice -The Effect of Quercetin on GABAA Receptor Beta Subunits-

  • Moghbelinejad, Sahar;Rashvand, Zahra;Khodabandehloo, Fatemeh;Mohammadi, Ghazaleh;Nassiri-Asl, Marjan
    • Journal of Pharmacopuncture
    • /
    • v.19 no.2
    • /
    • pp.163-166
    • /
    • 2016
  • Objectives: Quercetin is a flavonoid and an important dietary constituent of fruits and vegetables. In recent years, several pharmacological activities of quercetin, such as its neuroprotective activity and, more specifically, its anti-convulsant effects in animal models of epilepsy, have been reported. This study evaluated the role of quercetin pretreatment on gene expression of ${\gamma}$-amino butyric acid type A ($GABA_A$) receptor beta subunits in kainic acid (KA)-induced seizures in mice. Methods: The animals were divided into four groups: one saline group, one group in which seizures were induced by using KA (10 mg/kg) without quercetin pretreatment and two groups pretreated with quercetin (50 and 100 mg/kg) prior to seizures being induced by using KA. Next, the messenger ribonucleic acid (mRNA) levels of the $GABA_A$ receptor ${\beta}$ subunits in the hippocampus of each animal were assessed at 2 hours and 7 days after KA administration. Quantitative real-time polymerase chain reaction (RT-PCR) assay was used to detect mRNA content in hippocampal tissues. Results: Pretreatments with quercetin at doses of 50 and 100 mg/kg prevented significant increases in the mRNA levels of the ${\beta}_1$ and the ${\beta}_3$ subunits of the $GABA_A$ receptor at 2 hours after KA injection. Pretreatment with quercetin (100 mg/kg) significantly inhibited ${\beta}_1$ and ${\beta}_3$ gene expression in the hippocampus at 7 days after KA injection. But, this inhibitory effect of quercetin at 50 mg/kg on the mRNA levels of the ${\beta}_3$ subunit of the $GABA_A$ receptor was not observed at 7 days after KA administration. Conclusion: These results suggest that quercetin (100 mg/kg) modulates the expression of the $GABA_A$ receptor ${\beta}_1$ and ${\beta}_3$ subunits in the KA model of epilepsy, most likely to prevent compensatory responses. This may be related to the narrow therapeutic dose range for the anticonvulsant activities of quercetin.

Modulation of $GABA_A$ Receptor by Protein Kinase C in Autonomic Major Pelvic Ganglion Neurons

  • Choi, Yeun-Jong;Cha, Seung-Kyu;Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • ${\gamma}$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, and its actions are mediated by subtypes of GABA receptors named as $GABA_A$, $GABA_B,\;and\;GABA_C,\;GABA_A$, receptor consisting of ${\alpha},\;{\beta},\;{\gamma}\;and\;{\delta}$ subunits is a heterooligomeric ligand-gated chloride channel. This study was performed to investigate regulation of $GABA_A$ receptor by protein kinase C(PKC). Ion currents were recorded using gramicidine-perforated patch and whole cell patch clamp. mRNA encoding the subunits of PKC expressed in major pelvic ganglion (MPG) neurons was detected by using RT-PCR. The GABA-induced inward current was increased by PKC activators and decreased by PKC inhibitors, respectively. These effects were not associated with intracellular $Ca^{2+}$ and GAG (1-oleoyl-2-acetyl-sn-glycerol), a membrane permeable diacylglycerol (DAG) analogue. These results mean that the subfamily of PKC participating in activation of $GABA_A$ receptor would be an atypical PKC (aPKC). Among theses, ${\xi}$ isoform of aPKC was detected by RT-PCR. Taking together, we suggest that excitable $GABA_A$ receptor in sympathetic MPG neuron seemed to be regulated by aPKC, particular in ${\xi}$ isoform. The regulatory roles of PKC on excitatory $GABA_A$ receptors in sympathetic neurons of MPG may be an important factor to control the functional activity of various pelvic organs such as bowel movement, micturition and erection.

  • PDF

Anxiety and GABA System (불안과 GABA 체계)

  • Yang, Jong-Chul
    • Anxiety and mood
    • /
    • v.2 no.2
    • /
    • pp.79-85
    • /
    • 2006
  • Anxiety and anxiety disorders are related to many neurotransmitters, such as norepinephrine, serotonine, dopamine, glutamate, and Gamma-aminobutyric acid (GABA). GABA, the main inhibitory neurotransmitter of the CNS, is known to counterbalance the action of the excitatory neurotransmitters and control anxiety. GABA acts on 3 GABA receptor subtypes, $GABA_A$, $GABA_B$, and $GABA_C$. $GABA_A$ and $GABA_c$ receptors are oligomeric transmembrane glycoproteins composed of 5 subunits that are arranged around a central chloride channel. $GABA_B$ receptor comprises two 7-transmembraneis-spanning proteins that are coupled to either calcium or potassium channel via G proteins. This article highlights neurobiological interactions between anxiety and GABA system.

  • PDF

Honokiol Potentiates Pentobarbital-Induced Sleeping Behaviors through GABAA Receptor Cl- Channel Activation

  • Ma, Yuan;Ma, Hong;Jo, Young-Jun;Kim, Dong-Seon;Woo, Sung-Sick;Li, Rihua;Hong, Jin-Tae;Moon, Dong-Cheul;Oh, Ki-Wan;Eun, Jae-Soon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.328-335
    • /
    • 2008
  • This study was undertaken to investigate whether honokiol could enhance the pentobarbitalinduced sleeping behaviors through $\gamma$-aminobutyric acid (GABA) receptor $Cl^-$ channel activation. Thirty minutes after the oral administration of honokiol, mice were received sodium pentobarbital (42 mg/kg, i.p.). The time elapsed from pentobarbital injection to the loss of the righting reflex was taken as sleeping latency. The time elapsed between the loss and voluntary recovery of the righting reflex was considered as the total sleeping time. Western blot technique and $Cl^-$ sensitive fluorescence probe were used to detect the expression of $GABA_A$ receptor subunits and $Cl^-$ influx in the primary cultured cerebellar granule cells. Honokiol (0.1 and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg) in a dosage-dependent manner. Honokiol (20 and 50 ${\mu}M$) increased $Cl^-$ influx in primary cultured cerebellar granule cells, and selectively increased the $GABA_A$ receptor $\alpha$-subunit expression, but had no effect on the abundance of $\beta$ or $\gamma$-subunits. Chronic treatment with 20 ${\mu}M$ honokiol in primary cultured cerebellar neurons did not affect the abundance of GAD65/67. The results suggested that honokiol could potentiate pentobarbital-induced sleeping through $GABA_A$ receptor $Cl^-$ channel activation.

Ethanol Extract of Polygalae Radix Augments Pentobarbital-Induced Sleeping Behaviors through $GABA_Aergic$ Systems

  • Lee, Chung-Il;Lee, Mi Kyeong;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • Polygalae radix (PR) has traditionally been used as a sedative and anti-stress agent in oriental countries for a long time. PR which contains many ingredients is especially rich in saponins. This study was performed to investigate whether ethanol extract of PR enhances pentobarbital-induced sleep behaviors. In addition, possible mechanisms also were investigated. PR inhibited locomotor activity in mice. PR increased sleep rate and sleep time by concomitant administration with sub-hypnotic dose of pentobarbital (28 mg/kg). PR prolonged total sleeping time, and shortened sleep latency induced by pentobarbital (42 mg/kg). In addition, PR increased intracellular chloride concentration in primary cultured neuronal cells. The expression level of glutamic acid decarboxylase (GAD) were increased, and ${\gamma}$-aminobutyric acid $(GABA)_A$ receptors subunits were modulated by PR, especially increasing ${\gamma}$-subunit expression. In conclusion, PR augments penobarbital-induced sleep behaviors through activation of $GABA_A$ receptors and chloride channel complex.

4-Hydroxybenzaldehyde, One of Constituents from Gastrodiae Rhizoma Augments Pentobarbital-induced Sleeping Behaviors and Non-rapid Eye Movement (NREM) Sleep in Rodents

  • Choi, Jae Joon;Kim, Young-Shik;Kwon, Yeong Ok;Yoo, Jae Hyeon;Chong, Myong-Soo;Lee, Mi Kyeong;Hong, Jin Tae;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.219-225
    • /
    • 2015
  • In the previous experiments, we reported that ethanol extract of Gastrodiae Rhizoma, the dried tuber of Gastrodia ElataBlume (Orchidaceae) increased pentobarbital-induced sleeping behaviors. These experiments were undertaken to know whether 4-hydroxybenzaldehyde (4-HBD), is one of the major compounds of Gastrodiae Rhizoma increases pentobarbital-induced sleeping behaviors and changes sleep architectures via activating GABAA-ergic systems in rodents. 4-HBD decreased locomotor activity in mice. 4-HBD increased total sleep time, and decreased of sleep onset by pentobarbital (28 mg/kg and 40 mg/kg). 4-HBD showed synergistic effects with muscimol (a GABAA receptor agonist), shortening sleep onset and enhancing sleep time on pentobarbital-induced sleeping behaviors. On the other hand, 4-HBD (200 mg/kg, p.o.) itself significantly inhibited the counts of sleepwake cycles, and prolonged total sleep time and non-rapid eye movement (NREM) in rats. Moreover, 4-HBD increased intracellular Cl levels in the primary cultured cerebellar cells. The protein levels of glutamic acid decarboxylase (GAD) and GABAA receptors subunits were over-expressed by 4-HBD. Consequently, these results demonstrate that 4-HBD increased NREM sleep as well as sleeping behaviors via the activation of GABAA-ergic systems in rodents.

Alterations of Spontaneous Sleep Architecture and Cortical Electroencephalogram Power Spectra by Red Ginseng Extract via GABAAergic Systems

  • Yang, Shu-Long;Nam, Sang-Yoon;Han, Jin-Yi;Kim, Jun-Cheol;Lee, Ki-Nam;Hong, Jin-Tae;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2010
  • This study was undertaken to discover the effects and possible mechanisms of the effect of red ginseng extract (RGE) on spontaneous sleep. The effects of a low dose (10 mg/kg) and a high dose (200 mg/kg) of RGE were compared in rats. After recovery from a surgical operation enabling electroencephalograms recordings, rats were administered RGE orally. RGE was administered orally for 1 day or once per day for 5 days in either 10 or 200 mg/kg doses. Polygraphic signs were recorded for 12 h after oral administration of RGE. Both treatment with a large dose (200 mg/kg) of RGE for one day and treatment with either a large or a small dose for 5 days reduced the number of sleep.wake cycles. Daily treatment with RGE (either 10 or 200 mg/kg) for 5 days augmented NREM and total sleep, but reduced wakefulness. Delta wave activity recorded during non-REM (NREM) sleep and REM sleep was increased after one treatment with RGE (either 10 or 200 mg/kg). Delta wave activity during NREM was enhanced after daily treatment with RGE (either 10 or 200 mg/kg) for 5 days. Both alpha and beta subunits of the $\gamma$-aminobutyric acid $(GABA)_A$ receptor were significantly over-expressed in the hypothalamus of the RGE-treated groups. Moreover, the expression of glutamic acid decarboxylase was also increased in the hypothalamus. These results demonstrate that RGE may regulate spontaneous sleep via $GABA_A$ergic systems.

Rosmarinic Acid Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep through the Activation of GABAA-ergic Systems

  • Kwon, Yeong Ok;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • It has been known that RA, one of major constituents of Perilla frutescens which has been used as a traditional folk remedy for sedation in oriental countries, shows the anxiolytic-like and sedative effects. This study was performed to know whether RA may enhance pentobarbital-induced sleep through ${\gamma}-aminobutyric$ acid $(GABA)_A-ergic$ systems in rodents. RA (0.5, 1.0 and 2.0 mg/kg, p.o.) reduced the locomotor activity in mice. RA decreased sleep latency and increased the total sleep time in pentobarbital (42 mg/kg, i.p.)-induced sleeping mice. RA also increased sleeping time and number of falling sleep mice after treatment with sub-hypnotic pentobarbital (28 mg/kg, i.p.). In electroencephalogram (EEG) recording, RA (2.0 mg/kg) not only decreased the counts of sleep/wake cycles and REM sleep, but also increased the total and NREM sleep in rats. The power density of NREM sleep showed the increase in ${\delta}-waves$ and the decrease in ${\alpha}-waves$. On the other hand, RA (0.1, 1.0 and $10{\mu}g/ml$) increased intracellular $Cl^-$ influx in the primary cultured hypothalamic cells of rats. RA (p.o.) increased the protein expression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptors subunits except ${\beta}1$ subunit. In conclusion, RA augmented pentobarbital-induced sleeping behaviors through $GABA_A-ergic$ transmission. Thus, it is suggested that RA may be useful for the treatment of insomnia.

Distribution of AMPA Glutamate Receptor GluR1 Subunit-immunoreactive Neurons and their Co-Localization with Calcium-binding Proteins and GABA in the Mouse Visual Cortex

  • Kim, Tae-Jin;Ye, Eun-Ah;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.34-41
    • /
    • 2006
  • The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.

Purification and Characterization of Brain Succinic Semialdehyde Dehydrogenase

  • Song, M.S.;Lee, B.R.;Park, K.W.;Hong, J.W.;Yoo, B.K.;Cho, S.W.;S.Wee;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.71-71
    • /
    • 1995
  • The succinic semialdehyde dehydrogenase which is one of the key enzyme of GABA shunt in CNS has been purified from bovine brain homogeneously for the first time. The molecular mass of the native enzyme was estimated to be approximately 110,000 on gel filtration, The subunit molecular mass was determined by SDS-PAGE to be 54,000. These results indicate that the enzyme is a dimeric protein made up to identical subunits. Chemical modification studies of the enzyme suggest that the critical lysyl, connected with catalytic activity of the enzyme, The binding of IAF-SSDH(enzyme tagged with fluoreceine) to GABA transaminase which catalyzes the degradation of GABA was monitored by steady emission anisotropy. The changes of fluorescence anisotropy by interactions between two enzymes suggest that the formation of enzyme cluster must be invoved in the regulation of GABA concentration in brain tissues. The inhibitory effects of some antiepileptic and anticonvulsant drugs on the enzyme were also examined.

  • PDF